
CHEMICAL TRANSPORT BY

THREE-DIMENSIONAL

GROUNDWATER FLOWS

Prepared by

D.K. Babu

G.F. Pinder

A. Niemi

D.P. Ahlfeld

S.A. Stotho�

84-WR-3

Revised June 1997

Contents

1 INTRODUCTION 1

1.1 Purpose of Manual . 1

1.2 Governing Equations . 1

1.3 The PTC Solution Algorithm . 2

2 THREE DIMENSIONAL GROUNDWATER FLOW 3

2.1 Governing Equation . 3
2.2 Application of the Finite Element Method 4
2.3 Application of the Finite Di�erence Method 6

2.3.1 The Vertical Derivative . 6
2.3.2 The Time Derivative . 7

2.4 Solving the Discretized Equations . 9
2.4.1 Matrix Lumping . 9
2.4.2 The Splitting Algorithm . 9
2.4.3 The Final Form . 10

2.5 Boundary Conditions . 11

2.5.1 Speci�ed Head . 11
2.5.2 Speci�ed Flux . 11
2.5.3 Third Type . 11

2.6 Water Table Conditions . 13
2.7 Analytical Integration Procedures . 15

2.8 Mass Balance of Fluid Flow . 17

3 THREE DIMENSIONAL CONTAMINANT TRANSPORT 18

3.1 Governing Equations . 18
3.2 Solution Technique . 19

3.3 Final Form . 21

3.4 Boundary Conditions . 22
3.5 Equilibrium or Adsorption Isotherms . 22

3.6 Mass Balance of Contaminants . 24

i

4 USING PTC 26

4.1 Introduction . 26

4.2 Program Capabilities . 26

4.3 PTC Revisions . 27

4.4 Program Structure . 28

4.4.1 Module PTC.FOR . 28

4.4.2 Module IOTOOLS.FOR . 30

4.4.3 Module PTCCOM . 31

4.4.4 Module INCOMM . 31

4.5 Dimensioning, Modi�cation, and Compilation 31

4.5.1 Compile-time Program Dimensioning 31

4.5.2 Code Modi�cation . 31

4.5.3 Compilation . 33
4.6 Model Input and Veri�cation Issues . 33

4.6.1 Parameter De�nition . 33
4.6.2 Node Numbering . 34
4.6.3 PTC Error Checking . 34
4.6.4 Graphical Error Checking . 36
4.6.5 Mass Balance Error Checking . 36

4.7 Input/Output Philosophy . 36
4.8 Input Files . 38
4.9 Output Files . 38

4.9.1 Unit Variables for Simulation Output 39
4.9.2 Unit Variables for Query Output . 40

4.9.3 Unit Variables for Fast Input/Output 40
4.10 Command Structure . 40

4.10.1 Command Protocol . 40
4.11 \IOTOOLS" Commands . 42

4.11.1 Run Commands . 42

4.11.2 File Manipulation Commands . 42

4.11.3 Unit Manipulation Commands . 43
4.11.4 Input Data Manipulation Commands 44

4.12 Simulation Variables . 44

4.12.1 Time Marching Control . 45

4.13 Distributed Variables . 47

4.13.1 Command Word Parsing for Distributed Variables 47

4.13.2 Distributed Data Facilities . 49
4.13.3 Input of Distributed Values . 53

4.14 Output Control . 57
4.15 Mass Balance Output Interpretation . 58

ii

4.15.1 Fluid Mass Balance Output . 58

4.15.2 Contaminant Mass Balance Output 60

4.16 Output Query Commands . 60

4.17 Graphics Output Commands . 61

4.17.1 FORMAT Statement Syntax for Graphics Output 62

4.17.2 Graphics Output Commands . 64

4.18 Looping . 66

4.19 Sample Input Sequences . 66

4.19.1 Simulation Initiation Sequence . 66

4.19.2 Distributed Parameter Input Sequence 67

4.19.3 Time Dependent Boundary Conditions 69

4.20 Veri�cation/Debugging . 70

iii

Chapter 1

INTRODUCTION

1.1 Purpose of Manual

This manual describes the theory and use of the Princeton Transport Code (PTC). The �rst

three chapters will introduce the method used in solving the partial di�erential equations
which describe groundwater ow and contaminant transport, while Chapter 4 consists of
documentation for PTC. The manual is designed for the practicing hydrologist rather than
for the theoretician. Accordingly, we will omit detailed discussions of equation development
and error analysis, and refer the interested reader to the numerical methods and water
resources literature.

1.2 Governing Equations

PTC uses the following system of partial di�erential equations to represent groundwater
ow described by hydraulic head, h,

@

@x

�
Kxx

@h

@x

�
+

@

@y

�
Kyy

@h

@y

�
+

@

@z

�
Kzz

@h

@z

�
� S

@h

@t
+Q = 0 (1.1)

groundwater velocity components,

Vx = �Kxx

@h

@x
; Vy = �Kyy

@h

@y
; Vz = �Kzz

@h

@z
(1.2)

and contaminant transport described by concentration, c,

@

@x

�
Dxx

@c

@x
+Dxy

@c

@y
+Dxz

@c

@z

�
+

@

@y

�
Dyx

@c

@x
+Dyy

@c

@y
+Dyz

@c

@z

�

+
@

@z

�
Dzx

@c

@x
+Dzy

@c

@y
+Dzz

@c

@z

�
�

�
Vx

@c

@x
+ Vy

@c

@y
+ Vz

@c

@z

�

+Q(cw � c)� �[1 + E(c)]

�
@c

@t

�
= 0

(1.3)

1

These equations are derived from conservation of mass principles and Darcy's Law.

The de�nitions of various symbols introduced above will be explained in the following

chapters. The solution of these equations proceeds in the following sequence: �rst solve for

the hydraulic heads h from (1.1); next, calculate the Darcy velocities Vx, Vy, Vz from (1.2);

and �nally, solve (1.3) for the contaminant concentration c.

1.3 The PTC Solution Algorithm

Solving the system of equations (1.1){(1.3) for complex physical systems generally requires

application of numerical methods. For �eld scale systems, the computational e�ort involved

in solving a numerical discretization of these three-dimensional equations is large. PTC

employs a unique splitting algorithm for solving the fully three-dimensional equations which

reduces the computational burden signi�cantly.
The algorithm involves discretizing the domain into approximately parallel horizontal

layers. Within each layer a �nite element discretization [Pinder and Gray, 1977] is used
allowing for accurate representation of irregular domains. The layers are connected vertically

by a �nite di�erence discretization. This hybrid coupling of the �nite element and �nite
di�erence methods provides the opportunity to apply the splitting procedure. During a
given time iteration, all the computations are divided into two steps. In the �rst step all
the horizontal �nite element discretizations are solved independently of each other. In the
second step, the vertical equations which link the layers are solved.

The splitting procedure and its advantages will be presented in greater detail in the next
chapter.

2

Chapter 2

THREE DIMENSIONAL

GROUNDWATER FLOW

2.1 Governing Equation

PTC determines the ow characteristics of a groundwater system by solving for the hydraulic
head via the following partial di�erential equation

@

@x

�
Kxx

@h

@x

�
+

@

@y

�
Kyy

@h

@y

�
+

@

@z

�
Kzz

@h

@z

�
� S

@h

@t

+
rX

i=1

Qi�(x� xi)�(y � yi)�(z � zi) = 0

(2.1)

where, using a fundamental set of units denoted by length [L], time [T], and mass [M],

h is hydraulic head [L],
Kxx is the hydraulic conductivity in the x horizontal direction [LT�1],
Kyy is the hydraulic conductivity in the y horizontal direction [LT�1],
Kyy is the hydraulic conductivity in the z (vertical) direction [LT�1],
S is the speci�c storage coe�cient [L�1],

Qi is the source/sink term at location i [L3T�1] (e.g. pumps; positive values imply

injection),

�() is the Dirac delta function,
r is the number of source sink points.

For convenience, the last term in (2.1) will be abbreviated as Q.

The governing equation (2.1) is solved numerically by PTC using �nite element and
�nite di�erence methods. In the following sections, we introduce each method and apply it

to (2.1).

3

2.2 Application of the Finite Element Method

The splitting scheme used by PTC to solve (2.1) involves approximating the terms of (2.1)

containing x and y derivatives using a �nite element method. Finite elements in the hori-

zontal plane are widely used (see, for example, Pinder and Gray, 1977).

The �nite element method assumes that there exists an in�nite sum of functions that

will exactly represent the solution to the partial di�erential equation describing groundwater

ow. A �nite approximate form of the series is

h � ĥ =
NX
i=1

hi(z; t)wi(x; y) (2.2)

where

h is hydraulic head [L],
ĥ is the series approximation to h [L],
hi is an undetermined coe�cient [L],
wi is a basis (or interpolating) function (dimensionless), and
N is the number of nodes in the �nite element mesh.

The series approximation (2.2) provides an exact representation as N approaches in�n-
ity (ĥ approaches h). By a careful selection of the basis functions wi, the undetermined
coe�cients hi become the head values at nodes with coordinates (x; y; z). One key to the
computational e�ciency of the �nite element method is the use of piecewise continuous basis

functions which are nonzero over only a small subarea of the total domain. While many dif-
ferent types of basis functions may be used [Lapidus and Pinder, 1982], PTC uses piecewise
linear basis functions between adjacent �nite element nodes.

The �nite element method proceeds by noting that, although the di�erential operator L
(e.g. equation 2.1) operating on h is equal to zero, when L operates on the approximating

function an error is introduced. In mathematical notation, we rewrite (2.1) as

L(h) = 0 (2.3)

while

L(ĥ) = R (2.4)

where R is the residual error.
To solve (2.2) using the �nite element method we attempt to minimize the residual R.

We accomplish this by �rst considering a complete set of functions wj. If we now force the

residual R to be orthogonal to all possible values of wj we are, in fact, forcing R to zero and
thereby obtaining a solution to (2.2). Expressing this another way

L(ĥ) = L(h) whenR = 0: (2.5)

4

PTC uses the same set of functions for the weighting functions wj as for the basis functions

wi; this procedure is called Galerkin's method. Accordingly, wi and wj are used inter-

changably throughout the remainder of this work.

Unfortunately, the condition expressed by (2.5) can be achieved only as N approaches

in�nity and computers can deal only with �nite sets of numbers. We are forced, therefore,

to consider a �nite subset of values wi, i = 1; 2; : : : ; N , which generally makes our solution

approximate rather than exact. Recalling the de�nition of orthogonal functions these N

conditions can be expressed asZ

Z
L(ĥ)wi dx dy = 0 i = 1; 2; : : : ; N (2.6)

where the domain of integration
 covers the entire horizontal cross section of the ow region.

Introducing the de�nition of (2.2) we obtain, for each weighting function wi,

Z

Z �
@

@x

�
Kxx

@ĥ

@x

�
+

@

@y

�
Kyy

@ĥ

@y

�
+

@

@z

�
Kzz

@ĥ

@z

�
� S

@ĥ

@t
+Q

�
wi dx dy = 0 (2.7)

Following the standard procedure for integration in the two-dimensional case, the x and

y terms of equation (2.7) can be integrated using Green's Theorem, producing

Z

Z �
Kxx

@ĥ

@x

@wi

@x
+Kyy

@ĥ

@y

@wi

@y

�
dx dy �

Z
�

�
Kxx

@ĥ

@x
lx +Kyy

@ĥ

@y
ly

�
wi d�

�

Z

Z �
@

@z

�
Kzz

@ĥ

@z

��
wi dx dy +

Z

Z �
S
@ĥ

@t
�Q

�
wi dx dy = 0

(2.8)

where lx and ly are the direction cosines between the normal to the cross-sectional boundary
� (the d� represents a small length along this boundary) and the x and y coordinate axes,

respectively. Substituting (2.2) into (2.8) completes our use of the �nite element method for
discretizing (2.1)

Z

Z �
Kxx

� NX
j=1

hj
@wj

@x

�
@wi

@x
+Kyy

� NX
j=1

hj
@wj

@y

�
@wi

@y

�
@

@z

�
Kzz

@

@z

NX
j=1

hjwj

�
wi + S

@

@t

� NX
j=1

hjwj

�
wi �Qwi

�
dx dy

�

Z
�

�
Kxx

@ĥ

@x
lx +Kyy

@ĥ

@y
ly

�
wi d� = 0

(2.9)

where i = 1; 2; : : : ; N . A formal substitution for the last term in (2.9) was not made because

the quantity in brackets is, in fact, the ux across the vertical boundary � of the horizontal

region. This term thus represents a horizontal ux boundary condition.

5

In the horizontal plane, at a given time level, the �nite element discretization summarized

in (2.9) provides us with N equations in the N unknown coe�cients (heads) de�ned in

(2.2). The �nite element method has provided the means to transform the derivatives of the

unknown heads with respect to x and y to derivatives of the known basis functions. In the

next section, the application of the �nite di�erence method to discretize the derivatives with

respect to z and time is described.

As an aid to the mass balance calculations, all of these equations are multiplied by the

layer thickness within the code. This is an equivalent formulation.

2.3 Application of the Finite Di�erence Method

Introducing matrix notation, where boldface capital letters represent square matrices and

boldface lowercase letters represent column vectors, we rewrite (2.9) in matrix form:

Ah +B
@h

@t
� v + f = 0 (2.10)

where A and B are (N � N) matrices and h, @h=@t, v and f are column vectors of length
N . The elements of A, B, v and f are

Aij =
Z

Z �
Kxx

@wi

@x

@wj

@x
+Kyy

@wi

@y

@wj

@y

�
dx dy (2.11a)

Bij =
Z

Z
Swiwj dx dy (2.11b)

fi = �
Z

Z
Qwi dx dy �

Z
�

�
Kxx

@ĥ

@x
lx +Kyy

@ĥ

@y
ly

�
wi d� (2.11c)

vi =
NX
j=1

�Z

Z
@

@z

�
Kzz

@hj

@z

�
wiwj dx dy

�
(2.11d)

where, as discussed earlier, f contains known boundary conditions.

2.3.1 The Vertical Derivative

The central feature of this computer code is the use of a central di�erencing scheme for the

space derivatives in the z direction in (2.11d). The vertical discretization is accomplished
by requiring that the horizontal �nite element meshes be replicated in layers with nodes

stacked one above the other (see Figure 2.1). This means that in the vertical direction a
one-dimensional �nite di�erence equation can be used to approximate (2.11d). Using k as

6

the vertical index, with k = 1 as the bottom layer, this approximation written in matrix

form yields:

v �= C+
k (hk+1 � hk)�C�

k (hk � hk�1) (2.12)

where the harmonic mean of adjacent layer properties is used to de�ne the elements of C+
k ,

the vertical term between layer k and layer k + 1, and C�

k , the vertical term between layer

k and layer k � 1

C�

ij;k =
Z

Z
2

�zk[(�z=Kzz)k�1 + (�z=Kzz)k]
wiwj dx dy (2.13)

where (�zk) is the thickness of the kth layer at the point of approximation. The harmonic

mean gives the most realistic quantities in the heterogeneous situations normally encoun-

tered.
Substituting (2.12) into (2.10) produces the following expression for a typical kth layer:

Akhk +Bk

@hk

@t
�

�
C+

k (hk+1 � hk)�C�

k (hk � hk�1)
�
+ fk = 0 (2.14)

where hk represents the vector h of heads in the kth layer, k = 1; 2; : : : ;M , and M is the

number of layers in the z direction.

2.3.2 The Time Derivative

Our experience indicates that an implicit backward di�erence approximation of the time

derivative provides the most accurate solution to groundwater ow problems for a given cost.
In the backward di�erence representation, a �rst order correct scheme is used to approximate
the time derivative and the spatial derivatives are written at the new time level.

Applying this scheme to the time derivative in (2.14) yields, for each layer,

Akh
(t+�t)
k +

(BD)k

�t

�
h
(t+�t)
k � htk

�

�

�
C+

k (hk+1 � hk)�C�

k (hk � hk�1)
�t+�t

+ f tk = 0

(2.15)

Equation (2.15) is the complete discretization of (2.1), and provides us with M � N

equations in the N unknowns in (2.2) over each of the M layers. Computationally e�cient

solution of (2.15) is the focus of the next section.

7

CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCC

Figure 2.1: Schematic of horizontal �nite element meshes stacked atop one another, produc-
ing the three-dimensional discretization.

8

2.4 Solving the Discretized Equations

2.4.1 Matrix Lumping

Computational e�ciency and reduced storage requirements can be met by lumping matrices

[Pinder and Gray, 1977]. In the lumping of a matrix, the terms in each row are summed up,

and the resulting sum delegated to the diagonal position of that row. It may be seen that

for the storage matrix B (with terms
RR
Swiwj dx dy), and for vertical conductivity matrices

C (with terms de�ned by (2.13)), the diagonal elements predominate over the o�-diagonal

elements. It would, therefore, appear that lumping of these matrices introduces only minor

errors into the solution.

Thus, the lumped C and B matrices become, notationally, CD and BD, with diagonal

elements given by

(Ci)
�

k
=

NX
i=1

C�

ij;k (2.16a)

(Bi)k =
NX
i=1

Bij;k (2.16b)

where C�

ij;k is the (i; j)th entry in the original matrix C�

k and Bij;k is the (i; j)th entry in
the original matrix Bk.

All non-diagonal elements of BD and CD are de�ned as zero. Note that by lumping

of the vertical conductivity matrices, horizontal coupling between nodes in (2.12) has been
removed, producing a tridiagonal matrix equation at each node.

2.4.2 The Splitting Algorithm

To simplify discussion of this algorithm, we introduce the new notation

P[CD;h] = C+
k (hk+1 � hk)�C

�

k (hk � hk�1) (2.17)

where the lumped form of the matrices has been used. Using the lumped form and substi-

tuting (2.17) into (2.15) yields, for layers k = 1; 2; : : : ;M ,

Akh
(t+�t)
k +

(BD)k

�t

�
h
(t+�t)
k � htk

�
�P[CD;h]

(t+�t) + f tk = 0 (2.18)

The splitting algorithm is motivated by the recognition that solving (2.18) as a single
matrix equation presents an enormous computational burden for �eld scale problems. To

mitigate this burden, PTC uses a novel two-step splitting approach. In the �rst step, the z
derivative terms are assumed known and the remaining terms are solved for an intermediate

solution (h
(t+�t)�

k).

9

For a representative layer k, the matrix equation for this �rst step is:

STEP 1: (k = 1; 2; : : : ;M)

Akh
(t+�t)�

k +
(BD)k
�t

�
h
(t+�t)�

k � htk

�
�P[CD;h]

t
+ f tk = 0 (2.19)

By lagging the vertical derivative in (2.19) the horizontal layer equations have been

decoupled. Solving (2.19) then consists of solving M independent horizontal �nite element

systems.

The next step in the procedure retains the interim solution h
(t+�t)�

k in the A term, but

evaluates the z derivatives at the new time step. The matrix equations for the second stage

are thus:

STEP 2: (k = 1; 2; : : : ;M)

Akh
(t+�t)�

k +
(BD)k

�t

�
h
(t+�t)
k � htk

�
�P[CD;h]

(t+�t) + f tk = 0 (2.20)

A simple algebraic manipulation of the above equations leads to substantial savings in
computational e�ort. Equation (2.20) can be rewritten by subtracting (2.20) from (2.19),
yielding

P[CD;h]
(t+�t)

�
(BD)k

�t
h
(t+�t)
k �P[CD;h]

t +
(BD)k

�t
h
(t+�t)�

k = 0 (2.21)

Due to the decoupling introduced by the matrix lumping the solution of (2.21) involves a
single tridiagonal system for each node in the horizontal plane (i.e. N independent tridiagonal
systems).

2.4.3 The Final Form

Rewriting the matrix equations for each step of the PTC splitting algorithm with known
quantities on the right hand side, we have

STEP 1: (k = 1; 2; : : : ;M)

�
Ak +

(BD)k

�t

�
h
(t+�t)�

k = �f tk +P[CD;h]
t +

(BD)k

�t
htk (2.22)

STEP 2: (k = 1; 2; : : : ;M)

(BD)k

�t
h
(t+�t)
k �P[CD;h]

(t+�t)
=

(BD)k

�t
h
(t+�t)�

k �P[CD;h]
t

(2.23)

The combined algorithm consists of solvingM systems of equations of dimensionN (Step

1) and N tridiagonal systems of equations (Step 2) to complete one time step in the M �N

unknowns.

10

2.5 Boundary Conditions

PTC accommodates three types of boundary conditions on the ow equation. The three

types are Dirichlet (speci�ed head), Neumann (speci�ed ux) and third type (leakage).

Boundary conditions may be changed by the user during the course of a simulation as de-

scribed in Chapter 4. The default boundary condition for all boundaries is zero ux. This

implies a con�ned aquifer with impermeable bottom and sides. By selecting alternate bound-

ary conditions throughout the domain, the user can represent other hydrologic conditions.

2.5.1 Speci�ed Head

Constant head boundaries are de�ned by specifying nodes and the head values which are

�xed at those nodes. The code automatically factors out those rows and columns in the
coe�cient matrix associated with those nodes. Inasmuch as constant-head nodes are thus
e�ectively eliminated from our matrix equation, we will be left with (N �M�Nc) equations

in (N �M�Nc) unknowns, withNc being the total number of constant-head boundary nodes
in the ow domain.

2.5.2 Speci�ed Flux

The �nite element method provides a very simple means of specifying ux boundary condi-
tions. Upon application of Green's Theorem in (2.8) a boundary term arises. This term can
be rewritten as:

�

Z
�

�
Kxx

@ĥ

@x
lx +Kyy

@ĥ

@y
ly

�
wi d� = �

Z
�

qnwi d� (2.24)

where qn is the normal ux across a unit area (length � height) of the vertical boundary

�. When the ux qn is assumed constant along an element face of length L the integration
of (2.24) will give the nodal allocations indicated in Figure 2.2. Thus, the user need only
specify the volumetric ux at a node to represent the ux across a boundary. Fluxes due to
pumping are introduced mathematically in the same way (see equation 2.11c). That is, the

user speci�es a volumetric ux at a node. To facilitate introduction of uniform in�ltration

the code allows for speci�cation of a nodal in�ltration ux. Areal integration to obtain
volumetric ux is performed automatically by the code.

2.5.3 Third Type

Leakage boundary conditions are introduced by performing a substitution in (2.11c)

Q = kL(h
t
j;L � htj;k) (2.25)

11

BBBBB
BBBBB
BBBBB
BBBBB
BBBBB
BBBBB
BBBBB
BBBBB
BBBBB
BBBBB
BBBBB
BBBBB

Finite
Element
Mesh

L q
n

Lq
n

2

Lq
n

2

Nodal Flux
Allocation

BB
BB

Figure 2.2: Nodal distribution of ux q across an element of length L. For linear elements,
each node is equally weighted.

12

where htj;k is the unknown head at node j in layer k at time t; htj;L is the corresponding head

at the leakage reference point (e.g., elevation of a lake); and kL is the leakage conductance

(hydraulic conductivity divided by distance). The conductance term is integrated over area

and so implicitly represents a vertical leakage. However, by appropriate de�nition of the

user speci�ed constant, kL, any directional leakage can be de�ned.

2.6 Water Table Conditions

Imposition of water table or uncon�ned aquifer boundary conditions requires the introduction

of two boundary conditions applied to the water level in the top layer.

A schematic of the situation involving a moving water table, subject to in�ltration of

magnitude R(x; y; t), is indicated in Figure 2.3. The �xed elevation of the upper boundary

of the ow domain would be given by z = zM+1(x; y; t) and the actual elevation of the water
table is denoted by z = zWT (x; y; t).

The �rst boundary condition states that the water level in the top layer (hM) de�nes the
aquifer thickness in the top layer (zWT � zM). Accordingly, at each node we require

(zWT)i = (hM)i (2.26)

It is assumed in the present work that the water table is always situated within the top

layer (k = M). Thus, when the program computes the heads in the top layer, it checks if
the nodal values of hM is within the range of elevations given by

zM � hM � zM+1 (2.27)

PTC issues a message if condition (2.27) is violated. It prints out the nodal location,
the top thickness, etc., relevant to this violation. Execution is then terminated. Note that
(2.27) must also be satis�ed by the initial head conditions. Since zWT de�nes the top layer
thickness, which is present in the coe�cient matrices, (2.26) introduces nonlinearity into the
solution of the ow system of equations. This nonlinearity is accommodated by iterating

on the second step of the split algorithm. The iterations are performed at a single time

step, with all thickness related properties in (2.23) updated. When h changes by less than
EPSILN, a given tolerance value, the iterations are terminated and the calculations are
advanced to the next time step.

The second water table boundary condition describes the transient response of the water

table to in�ltration. Let Sy denote the speci�c yield near the water table. Then the equations
relevant to this situation are given by

Sy
@h

@t
+Kz

@h

@z
= R (2.28)

13

Interface
between
layers 1 and 2

((((((((((((((((((((((((((((((((((
((((((((((((((((((((((((((((((((((
((((((((((((((((((((((((((((((((((
((((((((((((((((((((((((((((((((((
((((((((((((((((((((((((((((((((((
((((((((((((((((((((((((((((((((((
((((((((((((((((((((((((((((((((((
((((((((((((((((((((((((((((((((((

1111111111111111111111111111111111
1111111111111111111111111111111111

!!
!!

Water Table

BB
BB

BB
BB BB

BB
!!
!!

!!
!!

Z = Z
2

Z = Z
1

Z = Z
M−1

Z = Z
M

Z = Z
M+1

Z = Z
WT

= h
M

Layer 1

Layer M−1

Water table node

Fixed node

Layer M

Water Table Conditions

!!
Imaginary node

Figure 2.3: Water table and precipitation conditions at the top boundary. The surfaces

denoted by z = z1, z = z2, etc., are �xed boundaries in space, and de�ne layers. Note: the
transient water table z = zWT must satisfy zM � zWT � zM+1.

14

Utilizing the imaginary nodes of layer (M + 1), a �nite di�erence version of (2.28) may

be written as

hM+1 = hM + qI
t
�W

@hM

@t
(2.29)

where, for each node i of the top layer (k = M), Syi is the porosity of the aquifer, Ri is

the net vertical in�ltration, �zi is the layer thickness, and (Kz)i is the vertical hydraulic

conductivity

qI
t =

8>>>>>>><
>>>>>>>:

�z1R1=(Kz)1
...

�ziRi=(Kz)i
...

�zNRN=(Kz)N

9>>>>>>>=
>>>>>>>;

(2.30)

W =

2
66664

�z1Sy1=(Kz)1 0 : : : 0
0 �z2Sy2=(Kz)2 : : : 0
...

...
. . .

...
0 : : : 0 �zNSyN=(Kz)N

3
77775 (2.31)

Equation (2.29) is employed as the boundary condition for equations (2.22) and (2.23),
when dealing with the top layer k = M . The terms continuing the time derivatives
(W@hM=@t) are entered as implicit (unknown) variables into equation (2.22) and (2.23),
for the top layer only. The extended version of these equations is thus given as follows:

STEP 1: (Modi�ed with Water Table Conditions (k = M))

�
Ak +

(BD)k

�t
+
W

�t

�
h
(t+�t)�

k =

�
(BD)k

�t
+
W

�t

�
htk +P[CD;h]

t
� f tk + qI

t (2.32)

STEP 2: (Modi�ed with Water Table Conditions (k = M))

�
(BD)k

�t
+
W

�t

�
h
(t+�t)
k �P[CD;h]

(t+�t) + qI
(t+�t)

=

�
(BD)k

�t
+
W

�t

�
h
(t+�t)�

k �P[CD;h]
t + qI

t

(2.33)

2.7 Analytical Integration Procedures

All integrations occurring in PTC are performed by employing analytical integration pro-
cedures. This has resulted in considerable savings of computational e�ort.

Two simpli�cations made this improvement possible: �rst, the �nite elements used here
consist exclusively of linear quadrilaterals formed by four (4) corner nodes; second, the

15

aquifer properties (Kxx, Kyy , Kzz , S) are assumed to remain constant over an element.

These properties may, of course, change from element to element.

The following brief description of the analytical integration procedure is to provide a

sense of continuity for the general reader. Algebraic details and estimates of errors may be

found in Babu and Pinder (1984b). The accompanying computer code incorporates several

of the formulae given in this reference.

Consider a typical integral given by (2.11b)

Bij =
Z

Z
Swiwj dx dy

Noting that this integral over the entire cross section equals the sum of integrals over

individual quadrilateral elements (e), the above integral is expressed as

Bij �

X
(e)

�Z

(e)

Z
S(e)wiwj dx dy

�

=
X
(e)

�
S(e)

Z

(e)

Z
wiwj dx dy

� (2.34)

since the storage S is assumed to remain constant over the given element (e).
The integration in the global (x; y) coordinate system is transformed into integration in

the local (�,�) system via the well known transformation

Z

(e)

Z
wiwj dx dy =

+1Z
�1

+1Z
�1

wiwj det J d� d� (2.35)

where det J is the determinant of the Jacobian of the transformation

det J �

�����
@x

@�

@x

@�
@y

@�

@y

@�

����� (2.36)

It is shown in Babu and Pinder (1984b) that, with �i, �i, �i, �i, �0, and �0 constants
depending on element (e),

wi � (1 + ��i)(1 + ��i)

det J � (1 + �0� + �0�)

@wi

@x
�

(1 + �i� + �i�)

det J
and so on.

(2.37)

Substitution of (2.37) into (2.35) yields integrals of the form

+1Z
�1

+1Z
�1

�
(1 + �0� + �0�)(1 + ��i)(1 + ��i)(1 + ��j)(1 + ��j)

�
d� d� (2.38)

16

This integral can be evaluated in a straightforward manner. Results such as (2.38) above,

combinedwith element parameters such as S in (2.34), are summed over all elements to derive

the values of Bij. Analogous procedures are applied to other integrals occurring in all �nite

element equations.

If the element (e) happens to be a rectangle (or a parallelogram), then �0 = �0 � 0,

giving det J � 1:0 in (2.37). This introduces further simplications into (2.38). Therefore,

di�erent subroutines in PTC perform the appropriate integrations.

2.8 Mass Balance of Fluid Flow

The governing equations described in the previous sections on groundwater ow are based

in part upon the principle of the conservation of mass. Due to the approximations inherent

in the numerical solution of the governing equations, exact mass balance is not possible;
however, conscientious time and space discretization can produce an adequate mass balance.
PTC provides the capability for performing a mass balance check which is independent of
the solution of the governing equations. This is accomplished by directly calculating the
mass ux across the boundary and the change of mass within the model domain. The net

ux across the domain boundaries must equal the change of mass within the domain for
mass balance to be satis�ed.

PTC calculates a volume balance as a surrogate for a mass balance. The two approaches
are equivalent, as the uid density is assumed to be constant. The change in volume of uid
at a node is equal to the change in head at the node, multiplied by the area associated with

the node (equal to one quarter of the area of each of the elements adjoining that node) and
the storage coe�cient associated with the node. The sum of these nodal changes in volume
is the total change in volume.

The volumetric ux across the boundary has a number of components. These include
speci�ed volumetric uxes, either at boundaries or at well points, computed uxes which
result from leakage from adjoining water units, and uxes associated with speci�ed head

nodes. The �nite element equation corresponding to a node contains a term which describes
the volumetric ux at that node (the second integral in equation (2.8)). This equation is

discarded for speci�ed head nodes when solving the ow equations. Given the head solution

for the entire domain, this equation can be used to back-substitute for the ux corresponding
to the speci�ed head node.

Details of output from the mass balance computations are provided in Chapter 4.

17

Chapter 3

THREE DIMENSIONAL

CONTAMINANT TRANSPORT

Chapter 2 described in some detail the procedure for computing the transient hydraulic head
h(x; y; z; t) by solving the ow equation (1.1). The present section briey outlines analogous

procedures for solving the contaminant transport equation (1.3).

3.1 Governing Equations

At the outset, Darcy velocities Vx, Vy and Vz are computed as element-averaged quantities.
The transport equation (1.3) is

@

@x

�
Dxx

@c

@x
+Dxy

@c

@y
+Dxz

@c

@z

�
+

@

@y

�
Dyx

@c

@x
+Dyy

@c

@y
+Dyz

@c

@z

�

+
@

@z

�
Dzx

@c

@x
+Dzy

@c

@y
+Dzz

@c

@z

�
+Q(cw � c)

�

�
Vx

@c

@x
+ Vy

@c

@y
+ Vz

@c

@z

�
� �[1 + E(c)]

�
@c

@t

�
= 0:

(3.1)

The dispersion terms in (3.1) are de�ned (following Burnett and Frind [1987]):

Dxx = (�LV
2
x + �TV

2
y + �V V

2
z)=V +DM

Dyy = (�TV
2
x + �LV

2
y + �V V

2
z)=V +DM

Dzz = (�V V
2
x + �V V

2
y + �LV

2
z)=V +DM

Dyx = Dxy = (�L � �T)VxVy=V

Dyz = Dzy = (�L � �V)VyVz=V

Dzx = Dxz = (�L � �V)VzVx=V

(3.2)

and the remaining terms are

18

DM is the molecular di�usion coe�cient, generally small [L2/T],

�L is the longitudinal dispersivity [L],

�T is the horizontal transverse dispersivity [L],

�V is the vertical transverse dispersivity [L],

V is the magnitude of the velocity vector [L/T] (V �
q
V 2
x + V 2

y + V 2
z),

c is the chemical concentration at the point (x; y; z) at time t [M/L3],

� is the porosity of the aquifer [dimensionless],

E(c) is the function representing chemical adsorption properties (see Section 3.5),

Q is the (source/sink) strength of pumping [1/T] (Q � Qi�(x�xi)�(y�yi)�(z�zi)),

Qi is the volumetric injection/discharge rate [L3/T] at point (xi, yi, zi),

cw is the concentration of the pumped uid at point (xi, yi, zi),

�() is the Dirac delta function.

For all cases of withdrawal by a pump (Qi � 0), we assume that the concentration of

the withdrawn (uid) water cw at the pump equals the concentration of the surrounding
ambient water c. Thus, at all discharging pumps, the term Q(cw� c) � 0 in (3.1). The code
therefore retains the terms with Q in (3.1) only when the pump is injecting (Qi > 0) the
solute, with concentration cw representing the concentration of the injection uid.

3.2 Solution Technique

The solution procedure is identical to that described in Chapter 2 for solving for head
(x; y; z; t). We form the Galerkin �nite element equations by �rst multiplying the left hand
side of (3.1) with the linear basis function wi(x; y), i = 1; 2; : : : ; N , and integrating by parts

(by Green's theorem) over the (x; y) cross section of the ow domain.
This results in the following system of N equations for N nodes in each layer

Z

Z �
Dxx

@c

@x
+Dxy

@c

@y
+Dxz

@c

@z

�
@wi

@x
+

�
Dyx

@c

@x
+Dyy

@c

@y
+Dyz

@c

@z

�
@wi

@y

�
dx dy

+
Z

Z �
Vx

@c

@x
+ Vy

@c

@y
+ Vz

@c

@z
+ �[1 + E(c)]

@c

@t

�
wi dx dy +Q(c� cw)i

=
Z
�

�
Dn

@c

@n

�
wi d� +

Z

Z �
@

@z

�
Dzx

@c

@x
+Dzy

@c

@y
+Dzz

@c

@z

��
wi dx dy

(3.3)

where (c � cw)i represents the concentration di�erence between ambient and injected uid
at node i. The integral on � denotes the dispersive ux normal to the boundary of the cross

section of the ow domain.

19

For the concentration c itself, the following approximation is introduced

c � c(x; y; z; t) �
NX
i=1

ci(z; t)wi(x; y) (3.4)

so that ci denotes the concentration at node i.

The next step follows the procedure for the ow equation. We substitute (3.4) into (3.3);

use �nite di�erences for the vertical and time derivatives; employ lumping of matrices (as

described in Section 2.3.1) that contain the time derivatives as well as the derivatives in the

vertical coordinate z; and �nally, transfer all terms with z derivatives to the right hand side.

The resulting matrix equations have the following structure:

Akck +Bk

@ck

@t
+Qk(ck � cwk)

= fk + [D+
k (ck+1 � ck)�D�

k (ck � ck�1)]�Mk

@ck

@z

(3.5)

The matrices introduced in (3.5) have the following de�nitions (for a typical layer k)

Ak �

Z

Z �
Dxx

@wi

@x

@wj

@x
+Dyy

@wi

@y

@wj

@y
+Dxy

�
@wi

@x

@wj

@y
+
@wi

@y

@wj

@x

�

+

�
Vx
@wj

@x
+ Vy

@wj

@y

�
wi

�
k

dx dy

Bk �

Z

Z
�[1 + E(c)]kwi dx dy

D�

k =
Z

Z
2(Dzz)k(Dzz)k�1

�zk[(�zk�1)(Dzz)k +�zk(Dzz)k�1]
wi dx dy

Mk �

Z

Z �
Vzwi +Dzx

@wi

@x
+Dzy

@wi

@y

�
k

dx dy

fk �

Z
�

�
Dn

@c

@n

�
k

wi d�

(3.6)

Qk �

2
66664

Q1�(z � zN) 0 : : : 0

0 Q2�(z � zN) : : : 0
...

...
. . .

...

0 0 : : : QN�(z � zN)

3
77775
k

ck �

8>>><
>>>:

c1
c2
...
cN

9>>>=
>>>;
k

cwk �

8>>>><
>>>>:

cw1
cw2
...
cwN

9>>>>=
>>>>;
k

The Bk, D
�

k , and M matrices are lumped diagonal matrices and the Ak matrix is banded
nonsymmetric. The fk vector contains the dispersive ux across the vertical boundary � of

the horizontal region
 for layer k, and the Qk diagonal matrix contains pumping/injection

20

rates. The vector of nodal concentrations of the ambient uid is denoted by ck and the

vector of concentrations at the pumps is denoted by cwk .

A well known technique called upstream weighting is introduced when evaluating the

convective terms containing Vx and Vy in Ak of (3.5) or (3.6). Such weighting on wi is

known to enhance the accuracy of the solution. Therefore, we de�ne the derivative @c=@z in

(3.5) in terms of nodes situated upstream in the vertical direction. Thus,

@c

@z
=

8><
>:
2(ck+1 � ck)=[�zk + (�z)k+1] if Vz < 0

2(ck � ck�1)=[�zk + (�z)k�1] if Vz > 0

(3.7)

3.3 Final Form

It is now obvious that the chemical transport equation (3.5) very much resembles the ow
equation (2.14). As a result of the lumping procedure, the transport equation for layer k
(k = 1; 2; : : : ;M) is given by

(A +Q)kck +Bk

@ck

@t
= fk +Qkc

w
k +U(ck) (3.8)

where the components Qi of the diagonal matrixQ of pump rates are absent from both sides

for all discharging pumps (Qi < 0! Qi � 0), and where

U(ck) �

8>>><
>>>:

D�

k (ck�1 � ck) +
�
D+

k �
2Mk

�zk +�zk+1

�
(ck+1 � ck) if Vz � 0

D+
k (ck+1 � ck) +

�
D�

k +
2Mk

�zk +�zk�1

�
(ck�1 � ck) if Vz � 0

(3.9)

The same two-step time splitting procedure summarized for the ow equation in (2.22) and
(2.23) is applied to (3.8), leading �nally to the solution algorithm for the transport problem
of (3.1).

STEP 1: k = 1; 2; : : : ;M

�
Ak +Qk +

Bk

�t

�
c�k = f tk +Qkc

w
k +

Bk

�t
ctk +U(ctk) (3.10)

STEP 2: k = 1; 2; : : : ;M

Akc
�

k +
�
Qk +

Bk

�t

�
c
(t+�t)
k �U(c

(t+�t)
k) = f tk +Qkc

w
k +

Bk

�t
ctk (3.11)

�
Qk +

Bk

�t

�
c
(t+�t)
k �U(c

(t+�t)
k) =

�
Qk +

Bk

�t

�
c�k �U(ctk) (3.11a)

21

For computational reasons, the code works with a slightly modi�ed version of (3.11). The

unknown variable considered in (3.11) will be the di�erence (cDIFF) � (c(t+�t) � ct) for all

layers. This change adds to the e�ciency of the numerical scheme, and also permits the use

of quite large time steps (�t).

�
Bk

�t
�U

��
c
(t+�t)
k � ctk

�
=
Bk

�t

�
c� � ctk

�
(3.11b)

3.4 Boundary Conditions

PTC accommodates the speci�cation of two types of boundary conditions on the transport

equation; speci�ed nodal concentration and speci�ed convective ux. The boundary condi-

tions are zero dispersive ux on the vertical side boundaries and zero total contaminant ux
on the top and bottom boundaries.

Speci�ed nodal concentrations are de�ned by the user as described in Chapter 4. Speci�ed
convective uxes are de�ned by indicating a concentration associated with the volumetric
uid uxes in the program input. Similarly, indirectly speci�ed convective ux is introduced

through the concentration associated with the leakage uid in the third type ow boundary
conditions.

3.5 Equilibrium or Adsorption Isotherms

The term adsorption is employed whenever some of the chemical, during its transport via
the moving uid, adheres to the soil grains. The following discussion is taken from Geraghty
and Miller (1979).

It is assumed that adsorption takes place instantaneously, implying that the solute in

the uid is in equilibrium with the adsorped component. This means that there exists an
equilibrium or adsorption isotherm of the form

I � I(c) (3.14)

The following options are presented in this model:

Linear isotherm: I = �1c,

Freundlich isotherm: I = �2c
�3,

Langmuir isotherm: I = �4c=(1 + �5c),

where the isotherms mentioned in (3.14) and the E(c) function introduced in equations (3.1)

and (3.2) are related by

E(c) �
�

�

dI(c)

dc
: (3.15)

22

In this, � is the bulk density of the solid matrix and � is the porosity. I(c) in (3.14) is

representative of the mass of the adsorped material, and dI=dc is a distribution coe�cient.

A more general discussion of these isotherms may be found in Perry's Chemical Engineering

Handbook (1963).

The linear isotherm,

dI(c)

dc
= � (� constant); (3.16)

is the simplest case as far as computations are concerned. This type of isotherm is often

used in modelling adsorption of radioactive species.

The Freundlich isotherm,

dI(c)

dc
= �c (�; constants); (3.17)

is used to model adsorption in dilute solutions with low concentrations, to model adsorption

of organic chemicals, and to model adsorption cases wherein the identity of the solute remains
unknown (Treybal, 1968). Note: For this isotherm, if < 0 and c ! 0, then E(c) ! 1.
In such situations, care must be exercised to prevent exponential overow in the computer
code.

The Langmuir isotherm is

dI(c)

dc
=

��

(1 + �c)2
(�; � constants); (3.18)

where � is the adsorption equilibrium constant, and � is the mass of solute adsorped per unit

mass of the adsorbent when all active sites for adsorption are covered. Since its introduction
in 1916, this type of isotherm has been widely used in view of its versatile applicability to
many adsorption processes (Smith, 1970).

From the computational point of view, the linear isotherm in (3.16) requires no extra
e�ort. However, for both the Freundlich (3.17) and Langmuir (3.18) isotherms, the matrices

Ak de�ned in (3.6) must be recomputed for every time step. This means that the overall
computational burden is substantially increased in the solution procedures for the transport

problem.

The code uses the following general analytical expression in the evaluation of adsorption
terms:

E(c) �
�c�

(1 + c)2
: (3.19)

From this general expression are derived the three special cases, linear (� = = 0), Fre-
undlich (= 0), and Langmuir (� = 0). The user supplies the values of �, � and whenever

the adsorption option is exercised. Note: � must include bulk density � when speci�ed in

the data input to PTC! Porosity � is included internally to the code.

23

3.6 Mass Balance of Contaminants

PTC performs a mass balance on the computed concentration solution. The mass balance

is performed in much the same way as that described for ow in Section 2.8.

The notable addition is that both convective and dispersivemass uxes must be accounted

for. Convective ux occurs at nodes at which uid crosses the boundary. This uid ux is

computed as described in Section 2.8. The convective ux then is simply the product of the

uid ux and the contaminant concentration of the uid.

Dispersive mass ux is accounted for by deriving an expression for dispersive boundary

ux. This is done by a second application of Green's Theorem to the �nite element integral

equation (3.3). With this new form the dispersive ux at nodes can be computed based

on the computed concentrations. The results of this mass balance analysis are output as

described in Chapter 4.

24

References

1. Babu, D.K., G.F. Pinder and D.K. Sunada, \A Three-dimensional hybrid �-

nite element-�nite di�erence scheme for groundwater simulation", Proc. 10th

IMACS World Congress on System Simulation and Scienti�c Comput-

ing. pp 292-294, 1982.

2. Babu, D.K. and G.F. Pinder, \A �nite element-�nite di�erence alternating direc-

tion algorithm for three dimensional groundwater transport", Adv. in Water

Resources 7, pp 116-119, 1984a.

3. Babu, D.K. and G.F. Pinder, \Analytical integration formulae for linear isopara-

metric �nite elements", Intl. Journal of Num. Methods in Engineering

20, pp 1153-1166, 1984b.

4. Burnett, R.D. and E.O. Frind, \Simulation of Contaminant Transport in Three

Dimension 2. Dimensionality E�ects",Water Resour. Res., 23(4), pp 695-705,
1987.

5. Geraghty and Miller, Inc., \Interim Report for Groundwater Module. Ground-
water Model documentation", prepared for Arthur D. Little, Inc. 1979.

6. Lapidus, L. and G.F. Pinder, \Numerical Solution of Partial Di�erential Equations

in Science and Engineering", John Wiley, New York, 1982.
7. Perry, J., \Chemical Engineers' Handbook", 4th Edition, McGraw-Hill, New York,

pp 16.5-16.11, 1963.
8. Pinder, G.F. and W.G. Gray, \Finite Element Simulation in Surface and Subsur-

face Hydrology", Academic Press, New York, 1977.

9. Smith, J.M., \Chemical Engineering Kinetics", 2nd Edition, McGraw-Hill, New York,
pp 291-293, 1970.

10. Treybal, R.E., \Mass Transfer Operations", 2nd Edition, McGraw-Hill, New York,
pp 506-508, 1968.

25

Chapter 4

USING PTC

4.1 Introduction

The Princeton Transport Code (PTC) is the result of contributions by many individuals

at Princeton University. A two-dimensional code for groundwater ow and contaminant
transport was originally developed by G. F. Pinder and W. G. Gray. The extension of the
code to three space dimensions was carried out by D. Krishna Babu who also substituted
Gaussian quadrature with analytical integration of basis functions. Auli Niemi revised the
code and adapted it to the IBM-PC. Additional boundary condition capability and internal
checking of the computed solution for mass balance were incorporated by David Ahlfeld.

Stuart Stotho� implemented the command-driven input/output structure, inspired by a
similar structure developed by Roger Page, and developed the data veri�cation, time step
generation, and graphics output routines.

4.2 Program Capabilities

PTC is a hybrid �nite element/�nite di�erence groundwater ow and contaminant transport

simulator. Present capabilities include:

� Two dimensional simulations
� Fully three dimensional simulations

� Transient groundwater ow
� Transient contaminant transport

� Transient boundary conditions

� Time step generation capabilities
� Saturated con�ned ow
� Saturated water table ow

� Linear, Freundlich and Langmuir adsorption isotherms

� Mass balancing capabilities for groundwater ow

26

� Mass balancing capabilities for contaminant transport

� Speci�ed head conditions at any node

� Speci�ed groundwater ux conditions at any node

� Speci�ed groundwater leakage conditions at any node

� Speci�ed concentration conditions at any node

� Speci�ed convective ux conditions at any node

� Speci�ed contaminant leakage conditions at any node

� Speci�ed rainfall conditions at every element in the top layer

� Piecewise constant parameters by element

� Quadrilateral and triangular elements

� Analytic elemental integrations

� Input of parameters by element or by node

� Command-driven and user-de�ned input structure
� User-requested data echoing
� Data editing capabilities
� Data looping capabilities
� Data generation capabilities

� Data veri�cation capabilities
� Output for graphics packages

4.3 PTC Revisions

The Princeton Transport Code is continually undergoing revision, both minor and major.
As these modi�cations are made, the input structure may change. The following denote
revisions in the release of January of the indicated year.

New or modi�ed from 1992 to 1993 are:

� memory is partitioned at run-time
� arrays are passed as arguments, not in common
� vertical transverse dispersion is separate from horizontal transverse dispersion

� adsorption input is de�ned by elements

� setfdon/setfdo� sets ow dimensioning
� setmdon/setmdo� sets mass transport dimensioning
� setdfrac sets fraction of nodes considered dirichlet

� setsson/setsso� sets speci�ed steady state

� drgparam/draparam includes vertical transverse dispersivity

Previous revisions include:

� triangular elements [1992]

� major simpli�cation of numeric code structure [1992]

27

� third-type boundary condition input rede�ned [1992]

� data generation/checking [1990]

� command language [1989]

� graphics output facilities [1989]

� transient and third-type boundary condition [1988]

� mass balance facilities [1987]

� IBM PC version [1986]

4.4 Program Structure

PTC is written in standard FORTRAN 77, with one known exception, explained in the

section on dimensioning and compilation.

The program is divided into four program modules, comprising two modules with sub-
routines and two modules which are included into the other modules. Two of the modules
are directly related to operating PTC, and the other two are standalone modules which are
devoted to providing a standardized set of input commands.

The programmodules are listed as they appear on the distribution disk, with a description

of the subroutines:

4.4.1 Module PTC.FOR

This module contains all PTC-speci�c routines. Many of the major routines are listed below.

PTC Main program for PTC.
PRESET Initialization of �le information, print information, and variables used

in calculations.
PSETLG Set dimensions and allocate arrays.
INTADM Assure coe�cient arrays allocated.
INTDPT Initialize a pointer to an array.

INTPNT Set up a pointer description.
FINISH Standard end point for execution.

PTCIN Command center for all PTC input.

RGENIN Command center for distributed variable input.
GEOMAK Generate calculated input values for geometry and mesh.

UNKMAK Generate calculated input values for stresses and initial conditions.
GEOCHK Verify validity of geometry and mesh.

SIMCHK Verify problem dimensioning.
PARMAK Generate calculated input values for parameters.

GNTIME Generate initial time step size.

GNTEND Generate �nal time from time step parameters.

28

PTCOUT Command center for all PTC output.

SOLOUT Solution output for time-varying solution values.

DBAND Triangular decomposition by Cholesky method.

SBAND Back substitution for Cholesky method.

TRID Tridiagonal matrix solver using Thomas's algorithm.

SOLVE Non-symmetric matrix solver using Gaussian elimination.

SAVMAT Fast input/output for solution matrices.

PTCGRF Command center for all PTC graphical output.

PGRVAL Center for graphics output of parameter values.

SIM Command center for time stepping.

FLOW Solution of the ow equation at a time step.

BM2VM Convert a banded matrix to compressed storage.

VM2BM Convert a compressed matrix to banded form.
FLASM1 Assembly of the horizontal ow coe�cient matrix for a layer.
FLASM2 Reassembly of the horizontal ow coe�cient matrix for a layer.
FLHORZ Solution of the horizontal ow equation at a time step.
FLVERT Solution of the vertical ow equation at a time step.

WTUPDT Update information dependent on the water table.
MASS Solution of the transport equation at a time step.
MSHORZ Solution of the horizontal mass transport equation at a time step.
MSVERT Solution of the vertical mass transport equation at a time step.
MSASM1 Assembly of the horizontal transport coe�cient matrix for a layer.

MSASM2 Incorporation of retardation in the horizontal transport coe�cient ma-
trix for a layer .

MSASM3 Solve horizontal ow equations for a layer.
ADSORB Adsorption isotherm calculation.
STNNPE Determine if an element is a triangle or quadrilateral.

FHAFRC Accumulate ux terms in horizontal ow equations.
MHAFRC Accumulate ux terms in horizontal transport equations.
ASBDMT Assemble elemental coe�cients into a banded matrix.

MKHFLO Make horizontal coe�cient matrix generation for ow.
MKHCON Make horizontal coe�cient matrix generation for transport.

UDHFLO Make horizontal coe�cient update for ow.
MKEVEL Make elemental velocities from head �eld.

NQDET Make coe�cients for quadrilateral integrations.
NQUWT Make upstream weighting coe�cients for quadrilaterals.

NQSYM Do symmetric quadrilateral integrals.
NQ2SYM Do more quadrilateral integrals.

NQ1DER Do unsymmetric quadrilateral integrals.

NQ1DU Do more unsymmetric quadrilateral integrals.

29

NRSYM Do symmetric rectangle integrals.

NR2SYM Do more rectangle integrals.

NR1DER Do unsymmetric rectangle integrals.

NR1DU Do more unsymmetric rectangle integrals.

NTDET Make coe�cients for triangle integrations.

NTUWT Make upstream weighting coe�cients for triangles.

NTSYM Do symmetric triangle integrals.

NT2SYM Do more triangle integrals.

NT1DER Do unsymmetric triangle integrals.

NT1DU Do more unsymmetric triangle integrals.

ELAREA Analytical area integration for quadrilateral elements.

STFDIR Store elemental coe�cients for ow mass balance.

STMDIR Store elemental coe�cients for transport mass balance.
MASSBL Command center for mass balance calculations.
PMACCM Accumulation routine for mass balance calculations.

4.4.2 Module IOTOOLS.FOR

This module contains a package of miscellaneous routines, designed to handle most of the low
level input/output requirements independent of the main program. There are nearly forty
routines included, of which only the main or most frequently used routines are described
below.

CMNDDR Command center for command input interpretation and �le manipula-
tions.

CMARPR Argument prompting, for terminal input.
CMF1PR List-directed integer and character input.
CMF2PR Formatted character input.

CMSLRD List-directed input for all data types, with speci�ed number of values.
CMULRD List-directed input for all data types, with number of values speci�ed as

part of input.
IGEN Data generation for integer arrays.

RGEN Data generation for single and double precision arrays.

RDGEN Data generation for all data types.
RCLEAR Array zeroing for single and double precision arrays.

ICLEAR Array zeroing for integer arrays.
IOSET Initialization of IOTOOLS variables, �le units, and c�le information.

30

4.4.3 Module PTCCOM

This module contains parameter statements, dimension statements, and common block dec-

larations for the PTC.FOR module. This is placed inline at compilation time at every place

INCLUDE 'PTCCOM' statement is found. If this module is altered, module PTC.FOR

must be recompiled and relinked.

4.4.4 Module INCOMM

This module contains parameter statements, dimension statements, and common block dec-

larations for the IOTOOLS.FOR module. This is placed inline at compilation time at ev-

ery place INCLUDE 'INCOMM' statement is found. If this module is altered, module

IOTOOLS.FOR must be recompiled and relinked.

4.5 Dimensioning, Modi�cation, and Compilation

The PTC code is supplied as a set of FORTRAN modules, which must be compiled and
linked before the code may be run. It is expected that minor modi�cations to the code
will be required due to di�ering problem sizes, di�ering output needs, and di�ering compiler
requirements. This section discusses the modi�cations which may be required.

4.5.1 Compile-time Program Dimensioning

The PTC code partitions one large array into problem-dependent chunks at run-time. This
allows for the code to be compiled once, and run for di�ering problems without recompilation.
It is recommended that the array is dimensioned as large as the particular computer can �t
into memory. It may take a little experimentation to �nd the largest practical dimension for

a particular computer.
Dimensioning of the array is done in one place, in PTCCOM. The array is automatically

distributed to all other subroutines during compilation via the \INCLUDE" statement.

4.5.2 Code Modi�cation

Compiler-Dependent Modi�cation

All of the dimension statements and common blocks are grouped into two separate program
modules, and included at compilation time using the non-ANSI standard \INCLUDE" state-

ment. Most compilers accept some form of this statement; however, if your compiler does not
accept the statement, it is necessary to replace all occurrences of the INCLUDE statement

with an appropriate copy of the included �le prior to compilation. For such compilers, it is

31

good strategy to maintain a pristine copy of the original �les and only alter a copy of the

�les.

WARNING: some older versions of the MICROSOFT compiler for the IBM-PC support

the INCLUDE statement in a slightly di�erent format than that indicated in this docu-

mentation. Use of the MICROSOFT compiler may force the alteration of the \INCLUDE"

statements at each location they appear in the code.

In the PTCCOM �le, allowance is also provided for a space-saving procedure, which

may be desirable on machines with small amounts of memory. Floating point numbers

can be changed from double to single precision, thus using half of the storage space, with

a resulting loss of accuracy. The code may run faster in single precision mode; however,

it is highly recommended that double precision be retained wherever feasible to maintain

accuracy. These options are indicated at the top of the PTCCOM module.

In addition, the format of OPEN statements, used for �le de�nition, di�ers among varying
compilers, and these may need to be tailored to a compiler. For example, certain compilers
do not accept OPEN statements, and alternative methods of specifying designated �les are
required. The user must consult the compiler documentation in these instances.

Terminal-Dependent Modi�cation

Unfortunately, there is no standard way that the terminal is treated in FORTRAN; thus
interaction with PTC through the terminal is compiler dependent and operating system
dependent. A parameter, zopsys, is de�ned in the INCOMM module in order to handle
peculiarities in a graceful manner. The available options are listed in the INCOMM module
{ if none of these seem appropriate, de�ne zopsys to be a blank string.

The initial c�le for PTC may be speci�ed as a default �le, typically \ptc.run", or

the capabilities of DOS and unix operating systems may be exploited for terminal input
redirection. With this capability, the �le for input is signi�ed by the string \< filename",
where filename is the �le to be used.

The redirection capability is rather useful when several data sets are used, since copying
�les into the default �le is avoided, but there is no standard way in FORTRAN for forced

interaction with the terminal when input and output redirection is in e�ect. Alternatives
have been coded, using the zopsys ag, but it may be necessary to directly de�ne the forced

terminal input and output unit numbers, using the compiler documentation as a reference.

These variables are speci�ed in the IOSET subroutine in the IOTOOLS module.
If input redirection is desired, the variable yttred in the PRESET subroutine should be

set to true; otherwise it should be set to false.
PTC has historically been run with zopsys blank and yttred o�, and this is the way it

is con�gured for distribution.

32

Graphics-Dependent Modi�cation

The PTCGRF and PGRVAL subroutines are provided to output information to a graphics

�le, including mesh and nodal function values. Any commercially available graphics package

should be able to use the output from the subroutines, given proper formats from the data

set. If the output is to be tailored to a particular graphics package, the output from PTCGRF

and PGRVAL may be tailored to this package by changing the marked write statements.

4.5.3 Compilation

PTC has to date been successfully compiled under IBM FORTVS, UNIX f77 (on DEC,

SUN, and Silicon Graphics workstations), and Ryan-McFarland Professional FORTRAN for

the IBM-PC, all using Princeton facilities. There have also been rumors that compilation has

successfully occurred on a Macintosh, on a Cray supercomputer, and using the MICROSOFT
compiler on an IBM-PC; these have not been veri�ed by any of the authors of the code.

Each compiler has slightly di�erent standards for warning and error messages. In general,

warning messages may be ignored, particularly messages about unused variables. Warning
messages about inconsistent subroutine usage should be checked, but can usually be ignored
{ some of the IOTOOLS routines have been known to set o� this type of message.

The authors of the code are always interested in hearing of strange messages. If a compiler
issues an error message, or a warning message that seems important, please let us know. If

you �nd a �x for the message, this is also of great interest.

4.6 Model Input and Veri�cation Issues

There are several steps involved in creation and veri�cation of a model of a hydrogeologic
regime, some of which must be repeated time after time. One must have available a simulator
which is capable of modelling the regime of interest. One must create a conceptual model
which represents reality to the suitable level of abstraction. One must provide this model
to the simulator without error in translation. And one must interpret the output from the

simulator.
Procedures for creation of a suitable conceptual model is a topic beyond the scope of this

text. However, assuming that PTC is capable of simulating the selected conceptual model,

there are a number of steps which may be followed to ensure that this conceptual model is
correctly simulated. This section discusses issues involved in providing information to PTC

and retrieving information from PTC.

4.6.1 Parameter De�nition

Solving a groundwater problem using a numerical code requires the speci�cation of many

site-speci�c parameters. These parameters can, in theory, be speci�ed either for each node or

33

for each element. Because the numerical solution requires slightly less computational e�ort

when parameters are assumed constant over an element, and since all integrations in this

code are performed analytically, these parameters are assumed to be speci�ed as constants

over each element. In the event that a user decides to specify these parameters at each node,

the code automatically computes the arithmetic averages of these values over each element

and uses the calculated average as the actual input data.

4.6.2 Node Numbering

Careful examination of the �nite element equations used either for ow or for transport will

reveal that the coe�cient matrix created by these equations will have a banded structure.

The bandwidth of non-zero elements in the coe�cient matrices plays a signi�cant role

in the amount of computational e�ort required to solve (2.20), and it is important to mini-

mize this quantity. The bandwidth is a function of the maximum di�erence between nodal
numbers occurring on the same element. De�ning the worst di�erence as the maximum of
these di�erences over the entire mesh, the full bandwidth is equal to one plus twice the worst
di�erence, and the half bandwidth is one plus the worst di�erence. One soon learns from

experience that the minimum bandwidth is generally obtained by numbering sequentially in
the direction of the smallest number of elements in the model.

To illustrate this point, reference is made to Figure 4.1, where a mesh consisting of 12
elements and 21 nodes is numbered in two ways. In case A, numbering across the smallest
mesh dimension, the half-bandwidth is �ve as dictated by the maximum nodal di�erence of

eight. In case B, numbering across the largest mesh dimension, the half-bandwidth is nine.
When the incidence generation option is used, node numbering always increases in sweeps

along the x axis; however, an internal renumbering occurs so that the equation numbering is
optimal. When inputting a mesh, it is possible to explicitly specify the internal renumbering,
perhaps using some bandwidth minimizer.

4.6.3 PTC Error Checking

A great number of pieces of information must be input into PTC, and inevitably some of

the information is incorrectly or inappropriately speci�ed in early stages of model creation.

Accordingly, it is exceedingly important to verify all of the input to PTC, and a number of
methods for this may be pursued.

PTC is able to help with certain basic error checking tasks. PTC checks that dimensions
and ags are compatible with the input data whenever appropriate. PTC also performs a

series of checks prior to running SIM, including simple mesh veri�cation and parameter

validity checks. These last checks make sure that each element is valid geometrically, that
all layers have positive thickness, and that each material property is positive. When running
water table simulations, every time step the water table is checked to make sure it lies fully

34

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

1

3

2

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Half bandwidth is 5

Half bandwidth is 9

Figure 4.1: Two identical element con�gurations with markedly di�erent bandwidths, dic-
tated by the choice of nodal numbering scheme.

35

within the top layer. If any of these checks are violated, the o�ending element or node is

agged in the output and execution is halted.

These checks are useful for �nding gross errors in input, but obviously only provide a

minimum assurance. There is no assurance that elements are hooked up correctly, that

parameters are physically reasonable, or that applied stresses are in the correct location.

Thus, the checks are only a starting point for a complete veri�cation e�ort.

PTC echoes the input of any parameter upon request, as many times as requested, which

allows for cross-checking of the parameter against expected input at several points during

the course of data input. This is again useful for �nding gross input errors, but can be

extremely tedious in general.

4.6.4 Graphical Error Checking

It has been found that graphical examination of the mesh, parameters, initial conditions,
and solutions is a most e�ective method for verifying the input of the conceptual model.
It may be immediately evident that a well is in the wrong location upon examination of a
contour plot of head, for example. Similarly, a contour map of the parameters will often

reveal incorrect speci�cations.
With this observation in mind,PTC provides methodology for outputting the parameters

and solutions to a �le in a format suitable for plotting.
Since it is impossible to appropriately prespecify the correct format for every plotting

package, the actual write statements responsible for outputting to the �le may need to be

modi�ed before compilation in order to be suitable for an individual application. These write
statements are con�ned to the subroutines PTCGRF and PGRVAL in module PTCOUT.
The usage of the graphics commands are explained in a separate section.

4.6.5 Mass Balance Error Checking

PTC provides mass balance capabilities, both for ow and transport simulations. The mass
balance output provides an excellent indication of possible time and space discretization
errors, as a poor choice of time step or grid size will lead to a poor mass balance.

Usage and interpretation of the mass balance facilities is provided in a separate section.

4.7 Input/Output Philosophy

PTC is a command-driven package, and is rather exible in input/output structure. The
input structure is designed to be like a programming language itself, as the usage of the

program may vary widely among di�erent applications. Accordingly,PTC provides powerful

facilities for specifying input and requesting output. Note that all output must be speci�cally
requested; no output will be generated without a request.

36

A number of �les are addressed simultaneously when running PTC. In order to keep the

�les straight, each �le is referred to using a unit number. PTC uses an independent variable

to maintain the unit number for each potential input and output �le, but these variables

may point to the same �le. The OPEN command is used to let PTC know which �le a given

unit points to.

The independent routines contained in the program module \IOTOOLS" and the associ-

ated �le \INCOMM" are used as a �lter between PTC and the data input. These routines

act as a black box to the main portion of PTC, handling all of the low-level details of basic

�le manipulation, command screening, and data preprocessing. All input enters the program

through one of these routines.

The \IOTOOLS" routines have two input units and two output units, which are speci�ed

independently from the remainder of PTC. These units may be changed and restored easily.

Accordingly, input toPTC may be from any �le or combination of �les. Note that interactive
input and output is treated as a special case of a �le, enabling prompting for arguments and
data.

The \IOTOOLS" input �les are termed the c�le and the d�le. The c�le handles com-
mands and arguments to the commands. The d�le handles data input, where the distributed

data facilities are used, as described in the section on distributed data.
The \IOTOOLS" output �les are termed the cecho �le and the e�le �le. The cecho

�le echoes commands as input (default is no echo). The e�le is the error output �le (default
is no error output), where irregularities in the commands or data are noted as they occur.
These irregularities are from the standpoint of the \IOTOOLS" package, which are strictly

read-related; PTC performs higher level model assembly and checking prior to simulations.
It is a good idea to reset these immediately upon starting execution.

PTC maintains an independent list of dedicated units for various output functions. Each
of these units may point to any �le, again with the terminal being merely a special case.
Up to six �les at once may receive output, as there are dedicated units available for output

of ow solutions, transport solutions, graphical output, ow mass balance output, transport
mass balance output, and formatted output.

As few as two �les may be used for all of the input and output combined, as each dedicated

unit may point to the same �le, or an entire string of �les may be addressed in sequence.
Every variable which has a value for each node or element (distributed variables) may

be speci�ed in a number of ways, and each speci�cation may be combined with other spec-
i�cations. For example, a parameter may be speci�ed over the entire model, layerwise,

elementwise, and nodewise. When specifying parameters elementwise and nodewise, data
generation may be used for repetitious patterns of speci�cation; or a parameter may be

speci�ed for speci�c elements.
All parameters may have a scaling factor applied upon input. As PTC assumes that

all units are self consistent, such a scale is indispensible in converting from one set of units

to another. For example, rainfall data may be converted from in/year to m/sec merely by

37

applying the appropriate scale factor.

All data input may be read without a speci�ed format (list-directed). In addition, dis-

tributed variables may be read with a speci�ed format.

Commenting within the input �les is allowed.

4.8 Input Files

PTC expects input from two �les, which are be termed the c�le and the d�le. The c�le

is the �le from which commands and arguments to commands are read, and the d�le is the

�le from which large blocks of data are read. Of course, these �les need not have di�erent

unit numbers, and the same �le may be read for all input information. In general, the d�le

is only used when the distributed data facilities are in use, and is explained in the section on

distributed data facilities. The separate d�le unit allows large blocks of data to be kept in
their own separate (independently named) �le. This is most useful when independent data
is generated for each element, perhaps with some kriging algorithm, and it would be more
convenient to maintain several sets of data for each parameter.

PTC starts with both of these �les set to unit 1, which has a default name of \PTC.RUN".
In order to change this default �le name, it is necessary to change the OPEN statement in
subroutine PRESET, and recompile the program.

In order to change standard input �les during runtime, the commands CFILE, DFILE,
CRETURN, DRETURN, TERM, and GO are useful. As might be expected, these com-

mands manipulate which unit the commands and data are to be read from. In addition, the
commands DFILE and DFROMC specify the format in which the data is expected. The
use of CFILE and DFILE commands assumes that the appropriate �le has been previously
opened using an OPEN command.

In order to have interactive input, the commands TERM and GO are provided. In term

mode, the terminal is the expected source of commands and data. In addition, prompting
for arguments is provided and entering a blank line reissues the previous command. The GO
command ends term mode, and the previous c�le and d�le speci�cations are resumed.

Commands which manipulate �les include the FORTRAN calls OPEN, CLOSE, and

REWIND, with related calls BACKREC and SKIPREC. Using these commands, any desired

�le may be manipulated, and it may be accessed as often as desired.

Usage of all of these commands is speci�ed in the section describing IOTOOLS commands.

4.9 Output Files

PTC outputs information as requested by the user. Each component of the program which

generates output sends the output to a �le as directed by a dedicated variable unit number.
For example, the mass balance output for ow simulations is sent to a unit number speci�ed

38

by the variable NUOMBF. If this unit number is less than 1, output is suppressed for that

particular function. The default unit for all output is unit 6, which is the unit number

reserved for terminal output. Note that unit 5 is reserved for terminal input, and may not

be used for output. Units 15 through 19 inclusive are reserved for fast matrix storage, and

unit 91 is reserved for a looping manipulation �le; these must not be used as output units.

The �le which output is sent to must be explicitly opened using theOPEN command prior

to output being generated, and the unit variable for the output must be set to correspond

to this �le. The only exception is terminal units 5 and 6, which must not be opened. If

the unit variable is set to some unopened �le, the operating system will create a default �le

(typically \fort.3" or some variant).

Each of the variable unit numbers may be independently set to the same unit, which

will result in all output being sent to the �le the unit points to. Default unit numbers are

initialized in the PRESET subroutine. These may be altered by the user and the program
recompiled, or the unit numbers may be reset during execution.

There are three classes of output �les.
One class outputs information periodically during the simulation procedure, including

solutions and mass balances. The commands for setting the frequency of output and nam-

ing the �le to be output to are described in the sections on OUTPUT CONTROL and
GRAPHICS OUTPUT COMMANDS.

Another class is used for querying PTC before and after simulations on the present
state of the variables. The commands for querying for this information are described in the
sections on OUTPUT QUERY COMMANDS and GRAPHICS OUTPUT COMMANDS.

The last class is used for fast input/output during simulations when minimizing storage
requirements, such as occurs for large problems on small computers. This last class generates
binary scratch �les during runtime. The scratch �les are only opened if incore option is turned
o� using the RDCONTRL command; these �les should not exist following execution, but
other output must not go to these �les. Accordingly, the unit numbers speci�ed for these

�les must remain out of bounds for all other unit variables. The default unit numbers are
units 15 through 19 inclusive; these are set in subroutine PRESET.

The dedicated unit variables for output are as following:

4.9.1 Unit Variables for Simulation Output

NUOHD Formatted solution output for head. This is used for output fromFLWOUT

during ow simulations.
NUOCC Formatted solution output for concentration. This is used for output

from MASOUT during transport simulations.

NUOMBF Formatted mass balance output. This is used for output from MASSBL

during ow simulations.

39

NUOMBM Formatted mass balance output. This is used for output from MASSBL

during transport simulations.

NUOGRF Formatted graphics output. Query commands pre�xed with `GR' go to

this unit, as well as graphics output during ow and transport simula-

tions.

4.9.2 Unit Variables for Query Output

NUODAT Formatted data output. Query commands pre�xed with `WR' or `EC'

go to this unit, as well as error and warning messages.

4.9.3 Unit Variables for Fast Input/Output

NUSCF1 Scratch �le for ow simulations.
NUSCF2 Scratch �le for ow simulations.
NUSCTB Scratch �le for water table ow simulations.

NUSCM1 Scratch �le for transport simulations.
NUSCM2 Scratch �le for transport simulations.

4.10 Command Structure

Most PTC commands stand alone, as for ag setting commands or query commands, or
require small amounts of additional information, such as a unit number or time step infor-
mation. On the other hand, creating a large �nite element model necessarily requires the
speci�cation of an assortment of values for each node and each element.

Use of the \IOTOOLS" package provides a uniform structure for all input. In addition,

the RGENIN routine, which uses the \IOTOOLS" package, is a higher level command parsing
routine providing a uniform structure for input of all variables which must be de�ned for
each element or each node (distributed variables).

4.10.1 Command Protocol

The \IOTOOLS" package expects certain protocols to be followed in interpreting commands

and associated input, and will complain or do unexpected things if not humored. PTC

performs input processing external to the \IOTOOLS" package, but maintains the same set
of protocols for consistency's sake.

A command is actually a sequence of cards, including an optional sequence of comment

cards, a command card, perhaps a series of argument cards, and perhaps a series of dis-
tributed data cards. The comment cards, command card, and argument cards must all

40

reside in the c�le. The distributed data cards must exist in the d�le. If the d�le is the

same as the c�le, distributed data cards occur directly after the argument cards.

Sample command sequences are provided in a separate section below to illustrate the

procedures.

Comments

Comments are signaled by a *" (star) in the �rst column of a card, when a command card

would otherwise be read. This card is ignored. In addition, any space on a command card or

argument card following the complete command or set of arguments is valid for commenting.

Further, for \distributed data" with a speci�ed number of groups per card, space after the

�nal group on each card is valid for commenting.

WARNING: attempting to put comments before the end of the sequence of arguments

may result in a FORTRAN error message and crash PTC.

Command Words

A command word is a string of eight left-justi�ed characters, INCLUDING ANY TRAILING
BLANKS, on a card. Any characters after the eighth are ignored, allowing room for com-
ments. For some compilers and operating systems, a tab character may not be interpreted
as a blank, resulting in mysterious interpretation problems.

Command words are converted to a uniform case before interpretation, so command

words may be any combination of upper and lower case.
If a command word or a comment is expected, and the �rst eight characters of a card

do not �t the description of either a comment or a command word, the word is agged as
it is echoed but otherwise it is ignored. Accordingly, if an input command is not found or
an incorrect amount of data is found, the �rst eight characters of each card will be agged

until a correct command is found.
WARNING: if a command card is encountered while variables from a previous command

remain to be speci�ed, the program is unable to interpret the situation properly and may

crash, depending on the compiler. In such cases, using the data echoing facilities will provide
clues to the cause of the malfunction.

Arguments

On the card(s) following the command, a number of arguments may be required, depending

on the particular command, specifying such information as layer number and parameter

values. All arguments are input list-directed, and so may be spread over several cards.
Note that trailing arguments may remain unchanged by inserting a slash \/" instead of

the �rst of these trailing arguments.

41

Distributed Data Lines

Following all of the arguments, data input may be required, depending on the command,

where \data" is used in a speci�c sense. \Data" refers to only the information processed

by the distributed data facilities. The distributed data facilities allow a variety of input

structures, ranging from a speci�ed input value for each node or element through global

speci�cation and interpolated input.

Description of the distributed data routines is found below, in the distributed data sec-

tion.

PTC only uses the distributed data facilities for input of distributed variables, and only

when requested.

4.11 \IOTOOLS" Commands

This section describes the speci�cation of all requests handled using the \IOTOOLS" pack-
age. These requests include �le manipulation and data preprocessing requests.

In this and subsequent sections, commands are italicized (i.e. OPEN); any corresponding
arguments are in a typewriter font (i.e. MUNIT).

4.11.1 Run Commands

STOP Exit PTC.
QUIT Exit PTC.
END Exit PTC.
TERM Switch to terminal control (unit 5 input, unit 6 output).
GO Resume c�le control with same c�le and d�le that were in e�ect prior

to TERM command.

4.11.2 File Manipulation Commands

OPEN Open a �le.

MUNIT Unit number for the �le.

ZFILE File name (enclosed in quotes).
CLOSE Close a �le.

MUNIT Unit number for the �le.
REWIND Rewind a �le.

MUNIT Unit number for the �le.

BACKREC Backspace a speci�ed number of records in a �le.
MUNIT Unit number for the �le.
NREC Number of records to be backspaced.

42

SKIPREC Skip a speci�ed number of records in a �le.

MUNIT Unit number for the �le.

NREC Number of records to be skipped.

For each of the above commands, if the input �le unit number is 0, the current c�le unit

number is used.

4.11.3 Unit Manipulation Commands

One of the strengths of the \IOTOOLS" package is the ability to \program" the data set. The

unit manipulation commands act something like subroutines, the BACKREC and SKIPREC

commands can act something like goto statements, and the DO/OD commands (presented

in another section) provide looping capability.

In order to simulate the action of subroutines, PTC maintains information on the nesting

of each level of c�le. Current depth of nesting is 20, which is controlled by the parameter
MNSUB in the INCOMM module. If this is not su�cient, increase MNSUB, recompile the
IOTOOLS module, and relink PTC.

CFILE Specify unit number for command input.
MUNIT Unit number for command input �le.

This command has the e�ect of changing the current c�le (\calling a subroutine")
to MUNIT. The unit which is referred to must have been previously opened. The current
c�le is returned to with the �rst CRETURN command in the new c�le. Note that a

CFILE/CRETURN sequence, followed by another CFILE to the same unit, will cause exe-
cution to resume below the CRETURN command in the new �le, unless �le manipulation
commands have been performed on the new unit in the interim.

DFILE Specify unit number and format for data input (distributed data facility
usage only). This command has the e�ect of changing the current d�le.

MUNIT Unit number for data input �le.

ZFMT Data input format, enclosed in quotes. If the �rst character is a *"

(star), list-directed input is assumed.

NGPL Number of data groups per line. Specifying a positive number on list-
directed reads (ZFMT is a *") will create a space for comments on each

line, after the last group on the line. A negative value on list-directed
reads means that distributed data is read as a stream; data generation

must be o� and no comments are allowed until following the last input
value.

For each of the above commands, if the input �le unit number is 0, the current c�le unit
number is used.

43

DFROMC Specify format for data input, and use the current command �le unit for

the data �le unit (distributed data facility usage only).

ZFMT Data input format, enclosed in quotes (see DFILE description).

NGPL Number of data groups per line (see DFILE description).

EFILE Specify unit number for \IOTOOLS" error messages.

MUNIT Unit number for �le (default no output).

CRETURN Return to the c�le from which the last CFILE command was issued.

This has the e�ect of making a �le like a subroutine.

DRETURN Return to the d�le from which the last DFILE or DFROMC command

was issued.

4.11.4 Input Data Manipulation Commands

INDEXON Indexing enabled for distributed data and index integer expected.
INDEXOFF Indexing disabled for distributed data and index integer not expected.
DGENON Data generation enabled in distributed data routines and data generation

integer active.

DGENOFF Data generation disabled in distributed data routines (data generation
integer disabled).

SCALE Specify scale factor, and enable data scaling.
DSCALE Scale factor applied to all subsequent real numbers input with scaling

enabled. The default value is 1.0.

SCALEON Enable data scaling with the (previously de�ned) scale factor.
SCALEOFF Disable data scaling.

4.12 Simulation Variables

This section describes the input of variables which control model simulations. Each of these
variables is completely speci�ed from the c�le.

Each of these variables is speci�ed using the appropriate command word, followed by an
argument card.

In the following sections, a command word or portion of a command word is italicized

and in capital letters. The associated arguments are indented below the command.

WARNING: the problem dimensions must be among the �rst variables which are speci-
�ed, as input of the distributed variables depends on this prior speci�cation. Array allocation

ags MUST be set before even the problem dimensions are speci�ed. Array dimensioning
ags con�gure memory to allow ow or transport; if the ags are o�, memory is released for

other purposes.

RDTITLE Problem title.

44

ZTITLE A character string, no more than 80 characters, enclosed in quotes.

SETFDON Set ow array dimensioning on.

SETFDOFF Set ow array dimensioning o�.

SETMDON Set mass transport array dimensioning on.

SETMDOFF Set mass transport array dimensioning o�.

SETDFRAC Set maximum fraction of nodes that will be considered dirichlet nodes.

DIRFRC Fraction of nodes in the most extreme layer.

RDDIMS Problem dimensions.

NND Number of nodes in problem.

NEL Number of elements in problem.

NLY Number of layers in problem.

RDCONTRL Simulation option control (a 1 turns the option on, a 0 turns it o�).

NFLOW Flow calculation request (always on when mass balance required).
NVEL Velocity calculation request (on if transport is on).
NCONC Transport calculation request.
NCORE Incore calculation request (only turn o� if PTC is compiled with the

limited storage option).

NMB Mass balance calculation request.
RDDEBUG Debug option control (a 1 turns the option on, a 0 turns it o�).
NMAT Full matrix print request.

RDWTABLE Water table option control (a 1 turns the option on, a 0 turns it o�).
NTABLE Water table calculation request.

NITER Maximum number of water table iterations in a time step (input but not
used if water table calculation o�).

EPSILN Water table convergence criterion (input but not used if water table
calculation o�).

RDWEIGHT Upstream weighting value.

UPVALUE A value between 0.0 and 1.0, with 0.0 implying no upstream weighting.
RDDIFUSN Molecular di�usion value.
DIFUSN A (small) value, used in transport simulations, which is only important

where velocity is negligible.
SIM Perform data checks and begin the simulation speci�ed by the current

variable set.

4.12.1 Time Marching Control

Since the time scales for ow and transport simulation are often quite di�erent, PTC main-

tains two separate sets of time stepping parameters. At any particular point in time, the

only information which is needed for the simulator is the actual size of the time step. Since

45

the size of the time step should be directly related to the change in the solution during the

time step, larger time steps may be taken as transient behavior dies out.

The strategy which has been adopted attempts to minimize the cost of creating and

solving systems of equations as much as possible, since this is the largest portion of the

computational burden. PTC divides the system matrix into a space-dependent portion and

a time-dependent portion. These portions are generated and stored, and neither need be

recalculated until the boundary conditions change. Each time the time step changes, the

two portions are combined into a single system matrix. This system of equations is inverted,

and the resulting matrix is stored. Until the time step changes size again, the solution for

each time step is obtained by backsubstituting into the inverted matrix, which is a relatively

inexpensive operation.

Of these steps, inverting the systemmatrix is by far the largest burden. Accordingly, it is

advantageous to run the problem for several constant time steps, thereby not having to invert
the system matrix, then changing the time step; this can then be repeated as necessary.

With the observation that the cost of inverting the transport matrix is substantially
greater than the cost of inverting the ow matrix, the ow time step size is chosen as the
primary time unit. The transport time step size is treated as a fraction of the ow time

step size, with some number of transport steps per ow step; however, a separate set of time
accumulation variables are maintained, which keep track of ow time and transport time
from start of PTC and start of SIM.

In order to allow the time step to vary, PTC requires information on the initial time step
size, the number of steps the time step size is valid for, and the increase in time step size

after these steps. Either the initial time step size may be speci�ed, or it may be calculated
from the time step change information and a total length of time for the simulation.

If the time step becomes too large, perhaps in an attempt to reach steady state, the
quality of the solution deteriorates. Accordingly, there is user-specifed cuto� number of
steps beyond which the time step will not increase in size. In addition, a \steady-state" rate

of change of head with respect to time may be specifed. Once the largest nodal value for
the domain falls below the \steady-state" value, the current head distribution is used until
a change in boundary conditions, distributed parameters, or initial conditions is imposed.

Note that time stepping continues as speci�ed, but the cost of recalculating the ow solution
is eliminated.

GNTIME Calculated time step control.

ITMAX Total number of ow time steps in problem.

ITCHNG Number of ow time steps between time step size resets.
ITCHMX Number of ow time steps after which time steps stop changing size.
NMSPF Number of mass transport steps per ow step.

CHNG Multiplier for time step size (applied to DELT every ITCHNG time steps

until ITCHMX reached).
TLENG Total length of time for time step size calculation.

46

RDTIME Speci�ed time step control.

ITMAX Total number of ow time steps in problem.

ITCHNG Number of ow time steps between time step size resets.

ITCHMX Number of ow time steps after which time steps stop changing size.

NMSPF Number of mass transport steps per ow step.

DELT Initial time step size.

CHNG Multiplier for time step size (applied to DELT every ITCHNG time steps

until ITCHMX reached).

RDSTEADY Flow simulation steady state.

DHDTSS Rate of change of head with respect to time which is to be considered

steady state (a negative value forces continued calculation).

SETSSON Force the current head distribution to be considered steady state.

SETSSOFF Release the steady state override set by SETSSON.

4.13 Distributed Variables

This section describes the input of all independent variables, initial conditions for all depen-
dent variables, all boundary conditions, model geometry, and mesh speci�cation. Input of
each of these variables is through the routine RGENIN which is the driver for exible spec-
i�cation. RGENIN parses command words, veri�es that a valid command word has been
speci�ed, calls the required routines in the \IOTOOLS" package to read the data, averages

the data (if requested), and inserts the data into the appropriate places in the array.
Prior to input of any distributed variables, model dimensions must be speci�ed using the

RDDIMS command (described above). Prior to use of the averaging facilities, coordinate
and incidence information must be speci�ed.

Most of the distributed variables are de�ned by layer, and the layer must be speci�ed for

these variables. In general, if it makes sense that a layer must be speci�ed, the layer ag is
input; if it is not necessary to specify the layer, the layer ag is not looked for and must not
be input. For example, all material parameter information must have the layer speci�ed,

but coordinates are valid for each layer and so a layer must not be speci�ed.

4.13.1 Command Word Parsing for Distributed Variables

Each command word for the input of distributed parameters comprises three components.
The �rst two characters must be dr or de, which signals that distributed variables are about
to be read or edited. The third character may be a, d, g, e, n, or s. The remainder of the

command word is a mnemonic for the parameter, such as `condx' for x direction conductivity.

For example, a distributed parameter command might be dracondx.
In certain cases, some options are not appropriate for a particular distributed variable.

Input of an invalid option will result in the command not being recognized.

47

Note that since editing of an array is allowed, several commands may be issued in succes-

sion for the same array, using di�erent data structure keys. This is useful to specify global

values, then change speci�c values afterwards.

Edit Key

The second character is a trigger for clearing the array prior to inputting data. An r will

clear the array �rst, then read the input data in. An e will edit the array, leaving the contents

of the array intact unless overwritten by the new input.

Data Structure Key

The third character is a trigger for the way input data is supplied by the user and subse-

quently assigned to the distributed variable arrays.
An a will take as arguments the layer which is to be input and one representative group

of data. All nodes or elements in the layer are then assigned this group. Note that this
procedure has the e�ect of overwriting the present contents of the array in the speci�ed

layer.
In the case where the variable is not de�ned for each layer, such as for rainfall, the layer

speci�er is not required.
A g is like the a command, except that it acts on all layers. Accordingly, no layer speci�er

is ever input. In the case where the variable is not de�ned for each layer, the a and g options

are identical.
An s is like a selective a command. An s will take as arguments the layer which is to be

input (if required), and one representative group of data, just like the a option. However, in
the subsequent card(s), the speci�ed elements or nodes the representative group will apply
to is input. This is speci�ed by listing those elements or nodes. The sequence of elements

or nodes is terminated by a \/". These input values are assigned by element for variables
de�ned elementwise (i.e. model parameters), and are assigned by node for variables de�ned
nodewise (i.e. coordinates, elevations). No averaging is performed.

An e assumes that the information is supplied elementwise, and an n assumes that the
information is supplied nodewise. If the information is required in the model for each element

and the n option is speci�ed, the input information is read into a temporary array, averaged
appropriately, and placed into the required array. The converse is also true. Note that this

averaging process will not work if the element coordinates and incidences have not been
previously input. Detailed information on the input format for these options is provided in

the section on the distributed data facilities.
A d speci�es that input will be in the default mode for the variable, which is the e mode

for variables de�ned for each element and the n mode for variables de�ned at each node.

48

4.13.2 Distributed Data Facilities

In cases where there is limited information on the parameters, detailed information may not

be appropriate for the model, and the a, g, and s options may be adequate for specifying

all data for the model. However, as model development proceeds, the information supplied

to the model becomes more detailed. The distributed data facilities provide a uniform set

of procedures for specifying detailed information to PTC, where each node or element may

be independently speci�ed using the e or n options.

Since detailed information is often the result of output from other programs, exibility

in input is highly desirable. This exibility comes at the cost of complexity of input struc-

ture; the following describes the distributed data facilities. Several examples are provided

afterwards to step through implementations of the facilities.

The information which is input using the distributed data facilities may come from a �le

other than the c�le; however, the �le and the input format are speci�ed in the c�le.
In the simplest case, the input may simply be a formatted or list-directed stream of

numbers, implicitly assigned to each element in the input array in sequence. By setting the
index ag on, the input stream may explicitly assign values to elements in the input array;

elements may be reassigned values. By setting the generation ag on, the input stream may
�ll in elements within the input array using linear interpolation. And by setting another
ag, space in the input stream may be reserved for comments.

All of these ags are set prior to the command for input. The ags remain unchanged
until explicitly reset.

Only the e and the n cases of the Data Structure Key are handled using the distributed
data facilities; the following ags are ignored when specifying data using the a, g, and s

options.

Index Flag

If the index ag is on, an integer is required for each data group, indicating the element or
node each data group applies to. If the index ag is o�, this integer is inactive and it is

assumed that the data groups start at the �rst node or element and go to the last, including

each node or element in sequence.
The index state is set using the INDEXON and INDEXOFF commands.

Data Generation Flag

If the data generation ag is on, the second integer is active and provides an increment ag

NG. If the ag is non-zero, linear interpolation occurs between the data values in the current

and subsequent data groups. The interpolated values are inserted in every NGth spot in the
array from the current to the subsequent data group. If the data generation ag is o�, the

second integer is inactive and no interpolation occurs.

49

Note that data generation is meaningless unless the index ag is on. The generation

integer is read and ignored in this case.

The generation state is set using the DGENON and DGENOFF commands.

Data Format

Data may be read in list-directed format, or may be read formatted if desired. In addition,

data may be read in as a single long string irrespective of grouping (for instance, several

groups occupying one card) or have a speci�ed number of groups per card. Specifying a

number of groups per card allows the remainder of the card to be used as a comment area,

which may be useful. These options are speci�ed using theDFILE and DFROMC commands.

Details on these options are provided below.

WARNING: combining list-directed input and data generation requires a speci�ed num-

ber of groups per line, as the data is read into a relatively small bu�er which will overow

otherwise.

Resumption of Command Mode

The end of data input and resumption of command mode is signalled in several ways.
If the index ag is on, a 0 for the �rst integer signals resumption of command interpreta-

tion (note that this is the only way to end data input if the data generation ag is on). This
0 should be followed by a slash \/" if reading list-directed. When reading with a format, a

blank card takes the place of the 0; a 0 may be input for the index as well.
If data generation is o�, data input is ended when the expected number of data groups

(such as the number of elements or the number of nodes) have been read, and command
interpretation resumes.

Examples

In all cases, the input stream contains the values for the array. In addition, extra integers

may be present within the input stream, depending on the state of the index and generation
ags.

In each of the subsequent examples, it is assumed that the d�le is already set to the

same unit as the c�le, or it is set so during the example. If the d�le were not the same unit,
the portion of the example following the command and the layer number would be in the

d�le. The examples would be identical, except that the numbers (and termination signal)
would physically be in another �le.

As a simple example, assume that there are 5 elements in the problem, with one layer,
and x direction hydraulic conductivity is to be speci�ed. Further, element 1 is to receive the

value of 10.0, element 2 is to receive the value of 15.0, and so on through element 5, which

is to receive the value of 30.0.

50

In the simplest case, assuming that the problem dimensions have been speci�ed and list-

directed input is expected, the conductivity information may be speci�ed by the following

sequence:

indexoff

dgenoff

drecondx

1

10.0

15.0

20.0

25.0

30.0

Notice that no termination signal is needed; the end of input is signalled by the 5th value
having been read. In this and the following examples, the \1" following the command is the
layer number ag.

The same data may be input with the following sequence:

indexon

dgenoff

drecondx

1

1 10.0

5 30.0

3 20.0

2 15.0

4 25.0

0 /

Notice that a termination signal is needed, as is always the case when the index ag is
on; the end of input is signalled by the 0 ag having been read. In this case, order is not

important.

The same data may be input with the following sequence:

indexon

dgenon

drecondx

1

1 1 10.0

3 1 20.0

5 0 30.0

0 /

51

In this case, the data generation ag, the second integer, is the increment for linear

interpolation. The 1 signals that every subsequent element receives a value; the 0 signals

the end to interpolation. In this example, the element 3 speci�cation is not required; the

construction is perfectly valid, however.

Notice that the same termination signal is needed. Again, order is not important.

The same data may be input with the following sequence:

indexon

dgenon

drecondx

1

1 2 10.0

5 0 30.0

2 2 15.0

4 0 25.0

0 /

This construction demonstrates that interpolation may skip elements if desired. The �rst
pair assigns values to the odd elements; the second pair assigns values to the even elements.

The same data may be input with the following sequence:

dfromc

'*' 1

indexon

dgenon

drecondx

1

1 2 10.0 * input for odd elements

5 0 30.0

2 2 15.0 * input for even elements

4 0 25.0

0 /

The commenting is enabled by specifying that exactly 1 group per line will be input,

using the DFROMC command.
The same data may be input with the following sequence:

dfromc

'(i1,i2,f5.1,i4,i2,f5.1)' 2

indexon

dgenon

52

drecondx

1

1 2 10.0 5 0 30.0 * input for odd elements

2 2 15.0 4 0 25.0 * input for even elements

0 /

The DFROMC command speci�es that 2 groups per line is expected, and the FORTRAN

format for these groups is speci�ed.

Notice that when formatted input is used, the terminal / is not necessary, and cannot be

inside the formatted section if present.

4.13.3 Input of Distributed Values

This section describes the distributed variables, which are input using the methods outlined
above, unless otherwise speci�ed (such as for mesh generation).

Mesh

This section lists all mesh information.

Incidences are input using the distributed parameter element (e) protocol, unless the
generation option is used. The generation option assumes that, as far as connectivities are
concerned, the modelled region forms a rectangle. Node and element numbering proceeds
faster in the x direction; the equation number associated with each node maintains the
optimal bandwidth.

Moving node and equation ordering information are input using the distributed parameter
node (n) protocol. The moving node information is only used when the water table option
is on.

Prior to a simulation, each element is checked to see if it is rectangular, in order to
simplify integrations. An element is considered rectangular if the diagonals are the same

length.
The full input command is given below for incidence input. Note that the layer ag must

not appear when specifying incidences.

RDINCID Nodes forming an element, in strict counterclockwise order, starting at
any node (4 integers). If the �nal integer is zero, the element is a triangle.

GNINCID Generate incidences.
NGNELX Number of elements in x direction.

NGNELY Number of elements in y direction.

RVINCID Reverse the current order of the nodes forming each element.
RDWTNODE Specify nodes which are considered water table nodes when the water

table option is on. A 1 indicates water table node, a 0 indicates con�ned.
All nodes are considered water table nodes by default.

53

RDROWORD Specify equation number corresponding to each node (default order is by

node number). This allows for bandwidth minimization using external

optimizers.

Geometry

This section lists all geometrical information. Coordinates are input once, and interfacial

elevations are input for each interface, where an interface is a boundary between layers. Note

that there is one more interface than there are layers, as the top and bottom must also be

accounted for.

The following is the last portion of the command word and the corresponding input

variable. Note that the layer ag must not appear when specifying coordinates.

COORS X and Y coordinates of each node (2 numbers).
ELEV Elevation of an interface between layers at a node. The bottom of the

bottom layer is interface number 1.

In conjunction with the mesh generation option, the nodal coordinates may also be

generated. This is speci�ed as follows:

GNRECCOR Generate coordinates in a rectangle along axis directions.
DGX1 X coordinate of node number 1.
DGY1 Y coordinate of node number 1.
DGX2 X coordinate of node number NND.

DGY2 Y coordinate of node number NND.

Any layer can be split into 2 or more layers, for computational resolution purposes. Each
layer is identical to the original, except that it is a fraction of the thickness. In addition, any
speci�ed uxes are a fraction of the original ux. This splitting is speci�ed as follows:

SPLAYER Split a layer into evenly discretized sublayers.

MLAYER Layer which is to be split.

NUMNEW Number of sublayers desired.

The new layers displace the original layer numbering upward, and the top NUMNEW - 1

layers are discarded.

54

Distributed Parameters

This section lists all model parameters which are de�ned for each element. Each layer must

be input separately, unless the g mode is speci�ed.

The following is the last portion of the command word and the corresponding input

variable.

CONDX Hydraulic conductivity in the X coordinate direction [L/T].

CONDY Hydraulic conductivity in the Y coordinate direction [L/T].

CONDZ Hydraulic conductivity in the Z coordinate direction [L/T].

STOR Storage coe�cient [1/L] in con�ned layers, speci�c yield [dimensionless]

in uncon�ned layers.

POROS E�ective porosity (volume void space/volume).

ELONG Longitudinal dispersivity [L2/T].
ETRAN Horizontal transverse dispersivity [L2/T].
EVERT Vertical transverse dispersivity [L2/T].
ADSOR Adsorption coe�cients �, �, and (3 numbers). These coe�cients are

de�ned in Equation (3.19). Note that � must incorporate bulk density!

PARAM Group input of the x, y, and z conductivities, storage coe�cient, porosity,
longitudinal dispersivity, and horizontal and vertical transverse disper-
sivities for a layer or globally (8 numbers required in above order).

XVELO Velocity in the X coordinate direction [L/T].
YVELO Velocity in the Y coordinate direction [L/T].

ZVELO Velocity in the Z coordinate direction [L/T].

Note that the group input of distributed parameters only accepts the a and g options.

Initial Conditions

This section lists all initial condition information. Initial conditions must be de�ned for the
entire domain prior to the �rst call to SIM. Subsequent calls to SIM will have the initial
condition information overwritten by the last solution calculated during computation. Each

variable is de�ned at the nodes and is input layerwise.

The following is the last portion of the command word and the corresponding input
variable.

INITH Initial head [L].
INITC Initial concentration.

55

Applied Stresses

This section lists all boundary condition information.

All boundary conditions are applied at the nodes during simulations. All ow uxes are

treated as equivalent point sources at the node, supplied in units of length3/time. Note that

rainfall is supplied in units of length/time; internally to PTC, rainfall is multiplied by the

area associated with each node in order to arrive at the total volumetric input rate.

All boundary conditions may be applied at any node, whether on the interior or on the

boundary, and in any layer. Of course, rain ux is only applied at the top boundary. The

default condition is a no-ow boundary on the entire exterior boundary, with no applied

stresses on the interior of the domain.

Dirichlet and Neumann conditions are stored in the same array, as they are mutually

exclusive quantities. In order to specify which is desired, a ag must be supplied prior to

each individual quantity. This ag is 1 for a Dirichlet condition, and 2 for a Neumann
condition. If nothing is input for a node, it is assumed that no input ux is applied at the
node, if an interior node, or a zero ux condition applies, if a boundary node.

Leakage conditions require a reference head, a conductance, and a reference concentra-

tion, where conductance is hydraulic conductivity divided by length. The conductance is
multiplied by the area associated with the node, internal to the program, in order to calcu-
late uxes. The reference concentration is input but ignored in ow simulations. Leakage is
applied regardless of other boundary conditions, but in general mixing boundary conditions
is not recommended.

For mass transport cases, either the concentration of the ambient water is speci�ed
(Dirichlet condition) or the concentration of the uid ux into the system is speci�ed (Neu-
mann condition). A node with speci�ed ow leaving the system has concentration leaving
the system at ambient levels; a node with speci�ed ow entering the system must have some
non-negative concentration speci�ed. Accordingly, speci�ed mass ux information is ignored

unless water is entering the system at a Neumann or leakage node.
The following is the last portion of the command word and the corresponding input

variable. Techniques for resuming command interpretation (so as not to be forced to specify
zero values) are discussed in the section on the distributed data facilities.

BCFLO Speci�ed Dirichlet and Neumann information for ow.
IDFEQN Boundary condition ag (1 for Dirichlet, 2 for Neumann).

FQZ Boundary condition value [L or L3/T] for ow.

BCCON Speci�ed Dirichlet and Neumann information for transport.
IDCEQN Boundary condition ag (1 for Dirichlet, 2 for Neumann).
CFQZ Boundary condition value for transport [M/L3].

LEAK Speci�ed leakage information for ow and transport.

RHEAD Reference head value for ow [L].
RCOND Conductance value for ow [1/T].

56

RCONC Reference concentration value for transport [M/L3].

RAIN Speci�ed rain (in�ltration) information for ow.

RAIN Rainfall, to be integrated over the area associated with the node [L/T].

Note that the layer ag must not appear when specifying rainfall.

4.14 Output Control

This section describes the speci�cation of all output control requests which require periodic

output during time stepping, and the speci�cation of the �les which output goes to.

Each of the periodic output requests takes two pieces of information, the initial time

step for output and an increment for subsequent output. For instance, specifying KFTBEG

as 10 and KFTINC as 5 will result in output after ow time step 10 and every 5th time step

thereafter.
As a check, the �rst horizontal solution (before the vertical step) may be output by

specifying KFTBEG or KMTBEG as a number less than one. For example, if every 50th solution
was desired for ow, the proper speci�cation for KFTINC would be 50 and the proper value
for KFTBEG would be either 0 or 50, depending on whether the �rst horizontal solution was

desired or not.
These options are all initialized to produce no output { any option for which output is

desired must be explicitly reset. Note that RDPRTKEY, RDFOPKEY, and RDMOPKEY

can be used interchangably.

RDPRTKEY Speci�cation of solution output intervals.

KFTBEG Beginning ow time step for ow output. The �rst horizontal solution
is output if KFTBEG is less than 1.

KFTINC Number of ow time steps between output for ow.
KMTBEG Beginning transport time step for mass output. The �rst horizontal

solution is output if KMTBEG is less than 1.

KMTINC Number of transport time steps between output for mass.
RDFOPKEY Speci�cation of ow solution output intervals.

KFTBEG Beginning ow time step for output. The �rst horizontal solution is

output if KFTBEG is less than 1.
KFTINC Number of ow time steps between output.

KFGBEG Beginning ow time step for graphical output.
KFGINC Number of ow time steps between graphical output.

RDMOPKEY Speci�cation of mass transport solution output intervals.
KMTBEG Beginning transport time step for output. The �rst horizontal solution

is output if KMTBEG is less than 1.
KMTINC Number of transport time steps between output.

KMGBEG Beginning transport time step for graphical output.

57

KMGINC Number of transport time steps between graphical output.

RDVOPKEY Speci�cation of velocity solution output intervals.

KVTBEG Beginning ow time step for velocity output.

KVTINC Number of ow time steps between output for velocity.

RDQOPKEY Speci�cation of output intervals for uid ux at dirichlet nodes.

KQTBEG Beginning ow time step for uid ux output.

KQTINC Number of ow time steps between output for uid ux.

RDDOPKEY Speci�cation of output intervals for dispersive ux at dirichlet nodes.

KDTBEG Beginning transport time step for dispersive ux output.

KDTINC Number of transport time steps between output for dispersive ux.

The following commands specify the units which are to receive the output requests.

OWRIT Speci�cation of data output unit.

NUODAT Unit number for formatted data output requests and error messages
(negative to inhibit output).

MWRIT Speci�cation of mass balance output units.
NUOMBF Unit number for ow simulations (negative to inhibit output).
NUOMBM Unit number for transport simulations (negative to inhibit output).

RWRIT Speci�cation of solution result output units.
NUOHD Unit number for ow simulations (negative to inhibit output).
NUOCC Unit number for transport simulations (negative to inhibit output).

GWRIT Speci�cation of graphics output units (see graphics section).
CECHO Speci�cation of command echo unit.

KCECHO Unit number for command echoes and messages (negative to inhibit
output).

DECHO Speci�cation of distributed data echoing. This is a low-level echo, prior
to scaling, data generation, etc.

KDECHO Unit number for d�le input echoes (negative to inhibit output).
ZDECHF FORTRAN format for d�le input echoes, enclosed in quotes (a *" will

result in list-directed output).

4.15 Mass Balance Output Interpretation

4.15.1 Fluid Mass Balance Output

The objective of the mass balance routine is to provide information about the independently

computed net ux across the model domain boundary and the change of mass in the domain.
While we refer to this procedure as a mass balance, all output is in terms of volume balance.

This is equivalent under the assumption of constant density. The PTC uid volume balance

58

provides information on the total volumetric ux rate attributed to each of the mechanisms

by which uid is transferred. In each case the ux into the domain and the ux out of the

domain is given.

The total ux into the domain represents the total of the uxes at nodes at which the

ux is directed into the domain; similarly, the ux out is the total of all outward nodal

uxes. Thus, referring to the sample output, the second column provides the volumetric ux

due to speci�ed in�ltration. Columns three and four provide the total ux into and out of

the domain at speci�ed head nodes. This is computed by back-substituting into the �nite

element equation for the ux term at each of these nodes. Columns �ve and six include

uxes in and out at speci�ed ux points. These include speci�ed ux boundary points and

well points. Columns seven and eight describe the ux in and out of the domain resulting

from leakage, computed as the di�erence between the solved head and the reference head,

multiplied by the leakage conductance coe�cient. Column nine provides the net ux across
the boundary, which is the sum of all uxes into the domain minus the sum of all uxes out
of the domain. Column ten provides the net storage ux, which is the rate of change of uid
mass within the domain. This is computed by dividing the di�erence in heads between time
steps by the time step. Column eleven provides the net volumetric ux rate, and is simply

the di�erence between the net boundary ux and the net storage ux. For a perfect balance
this value should be zero. In practice, the net ux is often non-zero.

To provide a scaled measure of imbalance, column twelve provides a scaled net ux, which
is the net ux in column eleven divided by the sum of the absolute values of all ux activity
across the boundary and in the domain. Finally, column thirteen provides the accumulated

volume loss, which is a running sum of the net ux, multiplied by the time step. The
accumulated volume loss represents the accumulated volume of uid violating the balance
reported in column eleven. If this value is positive then the computed heads are lower than
they should be to properly represent the computed volume which has crossed the boundary.
If this value is negative then the computed heads are higher than they should be.

If the ow portion of PTC is used to model transient ow of groundwater, then the
mass balance output can be used to determine the accuracy of the model at maintaining
balance. In this case the user should attempt to manipulate the numerical discretization

parameters to maintain a small imbalance. Often the ow component of PTC is used to
produce a steady state solution. This is accomplished by iteration through time until the

head solutions remain constant. Equivalently, steady state is achieved when the net storage
ux, the net boundary ux, and the net ux are all approximately zero; that is, when there

is no change in the volume of uid in the domain. During the course of iteration to steady
state, the net ux may be signi�cantly di�erent from zero. These transient values are not of

concern, as only the �nal solution is of interest.

59

4.15.2 Contaminant Mass Balance Output

In a manner similar to that described for the uid volume balance, the components of the

contaminant mass ux across the domain and the change of mass within the domain are

provided in the output. Columns two and three provide the contaminant ux in and out

of the domain as a result of convection, while columns four and �ve provide the dispersive

ux at nodes which have speci�ed concentration (note that the default boundary condition

is zero dispersive ux). Columns six and seven provide the contaminant ux at speci�ed

uid ux points. This includes boundary uxes, uxes at leakage points, and uxes at well

points. Column eight provides the net ux of contaminant across the boundary.

Column nine provides the net storage ux or rate of change in contaminant mass within

the domain. This is computed by determining the change in mass associated with each

node and dividing this change by the time step. The di�erence in these uxes is reported

in column ten as the net ux; for a perfect balance this quantity should be zero. Again,
as for the uid balance, a scaled net ux is reported which consists of the absolute value
of net ux divided by the total absolute value of all uxes across the boundary and in the
domain during this time step. Finally column twelve provides the accumulated mass loss.

This value provides the quantity of mass which has crossed the boundary but not resulted
in an increase in concentrations within the domain as a result of discretization error. If this
value is positive it indicates that mass is missing from the domain (i.e. concentrations are
lower than they should be); if this value is negative, too much mass is present.

4.16 Output Query Commands

This section describes the speci�cation of all output query requests. All queries result in
output to the data output �le, which may be the terminal.

The following commands are each pre�xed by either \EC" or \WR", short for \echo" or

\write".
All output is formatted and interpreted. In general, these commands correspond to a

command specifying input. Queries regarding parameters which are de�ned in each layer

output all layers { in general, these queries should be made following the input of all layers.

TITLE Title.

CONTRL Problem simulation options.
DIMS Problem dimension.
TIME Time stepping control.

WEIGHT Upstream weighting.

WTABLE Water table options.
INITH Initial (current) head at each node.

INITC Initial (current) concentration at each node.

60

BC Boundary conditions, including Dirichlet, nonzero Neumann, and speci-

�ed leakage, at each node.

RAIN Rainfall ux at each node.

COORS Nodal coordinates.

INCID Element incidence list.

ELEV Nodal elevations.

QUADS Quadrilateral element list (this is automatically generated by the SIM

command, prior to running the simulation).

CONDX Hydraulic conductivity in the X coordinate direction.

CONDY Hydraulic conductivity in the Y coordinate direction.

CONDZ Hydraulic conductivity in the Z coordinate direction.

ELONG Longitudinal dispersivity.

ETRAN Transverse dispersivity.
STOR Storage coe�cient/speci�c yield.
POROS E�ective porosity.
ADSOR Adsorption coe�cients.
DIFUSN Molecular di�usion coe�cient.

LAYER All variables which are speci�ed for each element, and the thickness of
each layer.

VELOC Velocity in the X, Y, and Z coordinate directions.
XVELO Velocity in the X coordinate direction.
YVELO Velocity in the Y coordinate direction.

ZVELO Velocity in the Z coordinate direction.

4.17 Graphics Output Commands

This section describes the speci�cation of all graphics output requests.
PTC is not tied to any particular graphics package, as there are a number of packages

which are widely available. Output of nodal coordinates, incidences, and solutions is imple-

mented in the format of a proprietary plotting package, as an example of output protocol, but
it is expected that a small amount of recoding may be required in order to match the input
requirements of individual plotting packages. This should be limited to output statements

in the subroutine PTCGRF.

The following comments apply to the output protocol as implemented for the proprietary
plotting package. It is suggested that a similar procedure is followed for other implementa-

tions.
Some graphics packages allow all input to reside in one �le, where others require each set

of information to exist in a separate �le. PTC allows for either case, at the cost of some

sophistication in the PTC data set programming. Plotting packages may also require certain

61

command sequences, in addition to information such as element incidences and information

at each node, and again PTC allows for this possibility.

PTC will output nodal coordinates and element incidences on request, output any of the

distributed parameters, and periodically output head and concentration values at each node.

Any additional information which is speci�c to the plotting package may be echoed from

the input �le to the graphics �le using the GRECHON and GRECHOFF commands. These

commands allow verbatim translation from the input �le to the graphics �le by reading a

card into a bu�er, then outputting the bu�er. No interpretation of the contents of the bu�er

is made, except to check if the GRECHOFF command has been input.

Except for the verbatim echo, all information is output using an implied DO loop for the

variable, over the number of elements or number of nodes as appropriate. When outputting

the solution information, an outer DO loop is made over the number of layers.

4.17.1 FORMAT Statement Syntax for Graphics Output

When outputting information to the graphics �le, it is necessary to specify a FORTRAN
FORMAT to be used for the coordinate, incidence, and solution information. The FORMAT

is speci�ed following the appropriate command. This FORMAT is read into a character
string, and must have a single quote followed by a left parenthesis at the beginning of the
FORMAT, and a right parenthesis and single quote at the end of the FORMAT.

The FORMAT may also specify heading information for the graphics package. Since the
graphics package may or may not require a heading, the following provides a brief discussion

of FORMAT statements. For a fuller description, see any FORTRAN manual.
Each of the graphics commands for distributed parameters have a syntax something like

a possible syntax for coordinates:

WRITE(NUOGRF,ZECFMT) MFUNC,NND,(I1,(COOR(I2,I1),I2=1,2),I1=1,NND)

This statement sends output to the current graphics output unit, using ZECFMT for the

FORMAT. The information available for output is a \function number", the number of
nodes NND, and NND sets of the sequence I1,COOR(1,I1),COOR(2,I1). Any or all of this

information can end up in the output �le, using the appropriate FORMAT.

The simplest case for this output would be to output the function number and number of
nodes on one line, followed by NND lines, each with a node number and a pair of coordinates.

For this case, the input ZECFMT would be something like:

'(2I4/(I4,2E12.4))'

For those not familiar with FORTRAN, the I commands are used for integers and the E

commands are used for oating point numbers. The number after an I command is the
width allotted for the output number. The �rst number of the two after the E command

similarly allots a space for the oating point number, and the second number is the number

62

of digits following the decimal point. With the E command, the �rst number should be at

least 8 more than the second number.

The 2 in front of the E is a repeat count, stating that two oating point numbers are

expected; this is used for the �rst I command as well. The comma is used to separate format

commands, and the slash (/) is the line feed character.

The outermost set of parentheses is always required for a FORMAT statement. The

inner set illustrates a subtle but very useful point regarding FORTRAN FORMATS. In the

usual case, with no inner parentheses, the entire FORMAT is reused from the start, on a

new line, if there is more data to be output than allocated for in the FORMAT. However,

if the FORMAT ends with commands inside parentheses, only the commands inside the

parentheses are reused. For this example, MFUNC and NND is output using the �rst part of

the FORMAT, and the node number and coordinates are output using the string inside the

inner parentheses.
A more complicated case arises when the function number is not wanted. For this case,

the FORMAT would be modi�ed to read:

'(I4,T1,I4/(I4,2E12.4))'

The T command resets the output column which the next piece of information starts in. In

this case, it has the e�ect of erasing the function number. Note that the function number
must be output, THEN erased.

Similarly, if only the coordinates are wanted, the FORMAT could be modi�ed to read:

'(2I4,T1,(I4,T1,2E12.4))'

In this case, no slash command is needed.

As a �nal example, consider the case where there are four nodes and the output is to
look like

rdnod1

4

-1 '*'

0.000e+00 0.000e+00

1.000e+00 0.000e+00

2.000e+00 1.000e+01

4.000e+01 4.000e+00

A FORMAT which will produce this is

'(6Hrdnod1/I2,T1,I2/6H-1 ''*''/(I4,T1,1PE11.3,1PE11.3))'

63

This is a fairly complicated set of instructions, to say the least, but illustrates the full power

of the approach.

The H command outputs characters, with the preceding 6 in both cases stating that

the next 6 characters are to be output. The �rst slash forces a line feed, then the function

number is output and overwritten by the number of nodes. The second slash forces another

line feed, and again a character string is output.

Another subtlety pops up here; pairs of quotes are needed, instead of single quotes, so

that PTC will know that a quote is wanted, rather than the end of the FORMAT string.

Each pair of quotes is condensed into one quote, so the H command has a 6 instead of an 8

preceding it.

Still another subtlety pops up inside the innermost set of parentheses. The 1P in front

of the E moves the �rst signi�cant digit in front of the decimal point. Without this, the �rst

signi�cant digit is after the decimal point, wasting a digit of output.
The two �nal examples should provide a template for almost any situation.

4.17.2 Graphics Output Commands

The graphics output commands are similar to the data echo commands. However, several

commands are provided so that the vagaries of plotting packages may be handled gracefully.
In particular, output may go to a single �le or each function may go to a di�erent �le. A
function refers to values for one layer; in a three layer problem, for example, a request for
head output results in three functions. The function number starts at 1, is automatically
incremented as required, and may be reset as desired.

If separate �les are required, specifying a �lename seed (8 characters or less) will generate
a series of �les with the names of �lename.1, �lename.2, and so on. Specifying a blank
�lename seed will result in single �le output to the �le corresponding to unit NUOGRF (this
is the default). Often the �le number is the same as the function number.

In general, only distributed data may be requested, and only nodal values are output.

Each of the values de�ned as piecewise constant over elements has a nodal value calculated
from an areal average over the elements attached to the node, in the same way that rainfall
ux is calculated from elemental values, and this average value is output.

RDGRFKEY Speci�cation of graphics output intervals.
KFGBEG Beginning ow time step for ow output.

KFGINC Number of ow time steps between output for ow.

KMGBEG Beginning transport time step for mass output.
KMGINC Number of transport time steps between output for mass.

GWRIT Speci�cation of graphics output unit.
NUOGRF Unit number for graphics output �le (negative to inhibit output).

GRECHON The �rst 80 characters of each subsequent card are copied to the graphics

output �le, until the GRECHOFF command is encountered.

64

GRECHOFF Terminate verbatim translation from the command �le to the graphics

output �le and resume interpreted input.

GRFNAME Speci�cation of �lename seed and starting �le number.

ZFNAME Filename seed for multiple �les (blank for single �les).

MFIRST Starting �le number for multiple �les.

GRFNCNUM Speci�cation of starting function number.

MFUNC Starting function number.

GRSOLFMT Read the format used for function number, node number, and head,

concentration and distributed parameter output to graphics output �le.

ZSLFMT FORTRAN format for function number, node number, nodal coordi-

nates, and head, concentration, or distributed parameter value, enclosed

in quotes. The write string is MFUNC, (I1, (COOR(I2,I1), I2=1,2),

ARRND(I1), I1=1,NND).
GRCOORS Echo node and nodal coordinates to graphics output �le.
ZCDFMT FORTRAN format for node and nodal coordinate echo, enclosed in

quotes. The write string is NND, (I1, (COOR(I1,I2), I1=1,2),

I2=1,NND).

GRINCID Echo element and elemental incidences to graphics output �le.
ZIDFMT FORTRAN format for element and elemental incidence echo, enclosed

in quotes. The write string is NEL, (I1, (INCID(I2,I1), I2=1,4),

I1=1,NEL).
GRHEAD Echo current head solution to the graphics output �le, using the current

value of ZHDFMT for the output format.
GRCONC Echo current concentration solution to the graphics output �le, using

the current value of ZCCFMT for the output format.

The following commands are preceded by a \GR", and use the current value of ZSLFMT
for the output format.

CONDX Hydraulic conductivity in the X coordinate direction.

CONDY Hydraulic conductivity in the Y coordinate direction.
CONDZ Hydraulic conductivity in the Z coordinate direction.

STOR Storage coe�cient/speci�c yield.

ELONG Longitudinal dispersivity.
ETRAN Transverse dispersivity.

POROS Porosity.
XVELO Velocity in the X coordinate direction.

YVELO Velocity in the Y coordinate direction.
ZVELO Velocity in the Z coordinate direction.

65

Since the plotting control sequences tend to become complicated, it is suggested that

all of the plot commands are isolated to a separate �le, independent of the main command

�le. Prior to running a simulation, the plotting instructions would be executed by using the

CFILE command. At the bottom of the separate �le, a command of CRETURN will return

to the previous command �le.

4.18 Looping

In certain circumstances, it is advantageous to allow looping from within a data set. For

example, the response of a system under the inuence of an irrigation schedule, or yearly

rainfall patterns, may naturally have some repetitious set of applied stresses. PTC allows

looping from within the data set by copying the portions of the data set to be repeated into an

auxiliary �le, and using this auxiliary �le as a surrogate for the command �le. This procedure
is transparent to the usual conventions for switching the CFILE. Unit 91 is reserved for this
looping �le.

In order to keep track of loop nesting properly, each loop must have a separate name.

This loop name is an arbitrary sequence of up to six characters, signi�ed by xxxxxx in the
description.

DOxxxxxx Signal the top of a loop.
NLOOP Number of repetitions for the loop.

ODxxxxxx Signal the bottom of the current innermost loop. If no loop is active,

this is ignored.

The number of loops for which may be concurrently active is controlled by the parameter
MNDO in the INCOMM module. This is set at 10 initially. If more levels of nesting are
required, redimension MNDO, recompile the IOTOOLS module, and relink PTC.

4.19 Sample Input Sequences

This section provides sample input sequences with explanation of the sequences. All of the

sample sequences are copied directly from running data sets.

4.19.1 Simulation Initiation Sequence

This section assumes that all model parameters are already de�ned.

rdcontrl

1 0 0 1 1 *nflow nvel nconc ncore nmb

gntime

66

100 5 20 0 1.5 365. *itmax itchng itchmx nmspf chng tleng

rdprtkey

0 50 50 50 *kftbeg kftinc kmtbeg kmtinc

rdwtable

1 50 0.001 *ntable niter epsiln

sim

term

The above sequence turns on ow simulation, with calculation incore and mass balance

calculations for ow.

Then, 100 time steps are requested. The time step is calculated by multiplying it by 1.5

every 5 time steps until the 50th time step, and keeping it constant thereafter. The initial

time step is calculated internally, so that following the above procedure will result in the

elapsing of 365 days. Solution output is requested every 50 time steps, for both ow and
mass transport simulations, starting on the 50th time step in both cases. The �rst horizontal
solution is also requested for the ow simulation.

The water table option is turned on, with a maximum of 50 nonlinear iterations for water
table convergence, where convergence is reached with the maximum change in water table
elevation being less than 0.001.

Simulation is requested, followed by return to the terminal for further instructions.

4.19.2 Distributed Parameter Input Sequence

This section demonstrates various input strategies for distributed parameters.

The demonstrated sequence achieves three goals.
The problem dimensions are de�ned with the �rst command. The next sequence de�nes

the hydraulic conductivity �eld for the entire region. The last sequence de�nes the boundary
conditions for the bottom layer in the problem.

rddims

20 12 3 *nnd nel nly

drgparam *condx condy condz stor por elong etran

10.0 10.0 1.0 0.001 0.3 50.0 10.0 1.0

deacondx

2 0.001 *layer 2 x conductivity

deacondy

2 0.001 *layer 2 y conductivity

descondx

2 10.0 *layer 2 x conductivity window

8/ *1 element (8)

descondy

67

2 10.0 *layer 2 y conductivity window

8/ *1 element (8)

dfromc

'*' 1

indexon

dgenon

drecondz

2 *layer 2 z conductivity

1 1 0.0001 *initialize all elements

12 0 0.0001

8 0 1.0000 *define window element

0/

drnbcflo

1

1 1 1 88.0 *layer 1 heads (nodes 1,2,3 and 4)

4 0 1 90.0

0/

dgenoff

scale

192.5134

denbcflo

1 *layer 1 specified fluxes

5 2 -10.0 *extraction well

8 2 7.0 *injection well

0/

scaleoff

The �rst command states that there are 20 nodes, 12 elements, and 3 layers in the

problem.
The next command states that hydraulic conductivity in the X and Y directions is 10.0,

hydraulic conductivity in the Z direction is 1.0, the storage coe�cient is 0.001, porosity is

0.3, longitudinal dispersivity is 50.0, horizontal transverse dispersivity is 10.0, and vertical
transverse dispersivity is 1.0. These values are speci�ed globally (for all elements in all
layers).

The next two commands rede�ne the X and Y hydraulic conductivity in the middle layer

to be 0.001.
The next two commands de�ne a window in element 8 of layer 2, with X and Y hydraulic

conductivities matching the other layers.
The next four commands accomplish the same objective for the Z direction hydraulic

conductivity, using the distributed data facilities. Of this sequence, the �rst command

states that input from the d�le will be read list-directed, with one data group per line; note

68

that commenting is enabled at the end of each line. The second and third enables the index

and data generation �elds respectively. The last de�nes elements 1 through 12 as having the

value 0.0001 for Z direction hydraulic conductivity, then rede�nes element 8 as having the

value of 1.0000.

The next �ve commands de�ne the Dirichlet and Neumann boundary conditions for the

bottom layer. Of this sequence, the �rst command states that nodes 1 through 4 have values

for head of 88.0, 88.67, 89.33, and 90.0 respectively, using the distributed data facilities.

The second and third commands disable the data generation �eld and de�ne a scale factor

converting gallons per minute into cubic feet per day, which is applied hereafter. The fourth

command de�nes a pumping well of 10 gpm at node 5 and an injection well of 7 gpm at node

8, and the last command disables automatic scaling.

4.19.3 Time Dependent Boundary Conditions

This section assumes that all time invariant parameters are de�ned.

dgenoff

scale

192.5134

denbcflo

1 *layer 1 specified fluxes

5 2 -10.0 *extraction well

8 2 7.0 *injection well

0/

rdcontrl

1 0 0 1 1 *nflow nvel nconc ncore nmb

rdtime

100 5 50 2 0.1 1.5 *itmax itchng itchmx nmspf delt chng

rdprtkey

0 50 50 50 *kftbeg kftinc kmtbeg kmtinc

rdwtable

1 50 0.001 *ntable niter epsiln

sim

denbcflo

1 *layer 1 specified fluxes

5 2 -20.0 *extraction well

8 2 5.0 *injection well

0/

rdtime

100 5 20 2 0.2 1.5 *itmax itchng itchmx nmspf delt chng

rdprtkey

69

50 50 50 50 *kftbeg kftinc kmtbeg kmtinc

sim

term

The above sequence speci�es uxes at a pumping well and an extraction well, turns on

ow simulation, with calculation incore and mass balance calculations for ow.

Then, 100 time steps are requested, with an initial time step of 0.1. This is multiplied

by 1.5 every 5 time steps until the 50th time step. Solution output is requested every 50

time steps, for both ow and mass transport simulations, starting on the 50th time step

in both cases. The �rst horizontal solution is also requested for the ow simulation. Note

that transport simulation output requests will be ignored since no transport simulation is

requested.

The water table option is turned on, with a maximum of 50 nonlinear iterations for water

table convergence, where convergence is reached with the maximum change in water table
elevation being less than 0.001.

Simulation is requested.
The pumping well uxes are reset, and the time step is reset. The print key is reset,

turning o� the �rst horizontal solution output, then simulation is requested. This is followed
by return to the terminal for further instructions.

4.20 Veri�cation/Debugging

Sooner or later, an error will creep into a data set. Sometimes an error will manifest itself

in an obvious way, by crashing PTC immediately. Other times, the error is less obvious.
PTC veri�es the input data as much as possible, upon the issue of a SIM command, in

order to catch gross errors. Accordingly, it is recommended that the simulation is run for
one time step the �rst time a data set is run. Any errors that are detected will be agged
and output to the current NUODAT unit (set with the OWRIT command). The output �le

may then be inspected for these gross errors.

The user is responsible for �nal veri�cation. As a simple precaution, particularly in the
�rst few runs of a newly created data set, all variables should be output before running the
simulation. By comparing the output to the input, obvious errors can be detected.

Graphical veri�cation is also strongly recommended. Using the graphics output facilities,

all of the distributed parameters may be output either by element or by node (nodal output

allows for contouring).

Often, simply by taking these veri�cation steps, changes to the data set are obvious.
Other times, however, the output may bear little relationship to the input. In these cases,

usually the format of the data set is incorrect or an array has had input beyond the bounds
of the allotted dimensioning.

70

The structure of the data input allows for interactive debugging, as any variable may be

output as many times as desired. This can be done by putting a series of TERM commands

in the data �le, and selectively echoing variables to the terminal. Once it is apparent that

a variable is not correctly input, the location of the error may quickly be pinpointed by

outputting the variable at several locations. With a few iterations, the source of the error

can be bracketed { often the error occurs far from the point where the variable is �rst input.

A number of errors are commonly made by those not familiar with the code. Some of

the common errors are listed below.

Forgetting arguments. If a command expects an argument, and the argument is missing,

the next command is used as an argument with unpredictable results. Use CECHO to

echo interpreted commands.

Commenting arguments. If a command expects an argument, and the argument is com-
mented out, unpredictable results occur. Use CECHO to echo interpreted commands.
Note that once a valid argument is found, other arguments can be commented out

below the �rst.

INDEXON/INDEXOFF. Forgetting these commands will result in too many, not enough,
or strange data values being read, and possible array violations.

DGENON/DGENOFF. Forgetting these commands will result in too many, not enough,
or strange data values being read, and possible array violations.

SCALE/SCALEOFF. Forgetting these commands will result in strange data values being
read.

Forgetting command size. Each command is 8 characters long, including trailing blanks.
This is only a consideration if the command has a trailing comment. In some systems, a
TAB character is NOT a blank character! Use CECHO to echo interpreted commands.

71

